

Токарная обработка	TA1 - TA37
Отрезка и обработка канавок	TB1 - TB27
Резьбонарезание	TC1 - TC18
Обработка отверстий	TD1 - TD59

Фрезерование	TE1 - TE41
Монолитные фрезы	TF1 - TF10
Оснастка	TG1 - TG16
MPT	TH1 - TH5
Сплавы	TI1 - TI57

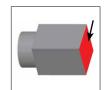
-Токарная обработка

GOLDRUSH сплавы	TA2
Выбор сплава	TA3
Информация о продукте	TA4
Обработка чугуна	TA25
Обработка алюминия	TA26
Выбор стружколома	TA27
Выбор пластин	TA28
Решение проблем	TA36

GOLDINGSII CIMABBI

- Улучшенная стойкость к скалыванию и поломке пластин
- Высокое качество обработанной поверхности
- Стабильная и высокая стойкость на операциях прерывистого и беспрерывного точения
- Снижение силы трения и минимизация нароста на режущую кромку при точении вязких материалов

Влияние новой технологии покрытия на износ



Материал: Низкоуглеродистая сталь (НВ145-160)

Пластина: CNMG 120408 TT8115

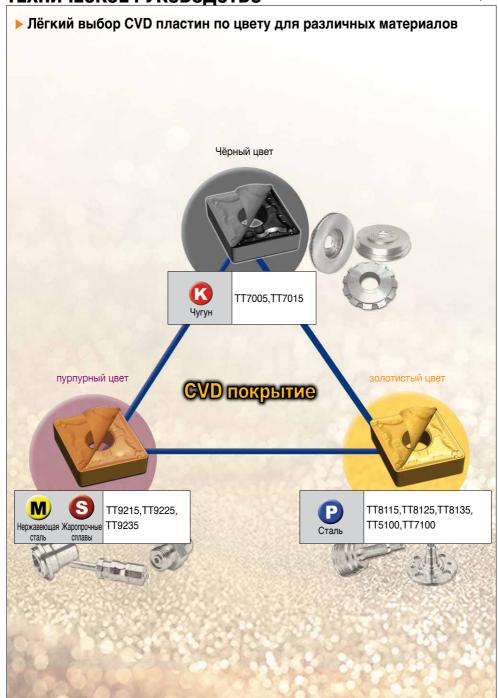
Режимы резания V=100м/мин f=0.10мм/об d=3.0мм

а=3.0мм Прерывистое торцевое точение

Материал: Холоднокатанная инструментальная сталь

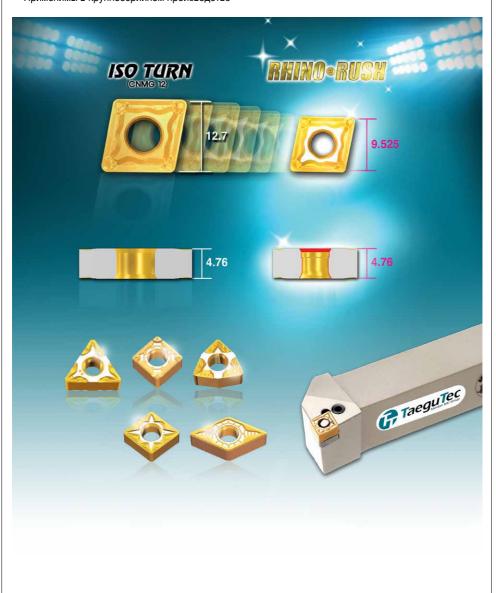
(HB170-190)

Пластина: CNMG 120408 TT8115


Режимы резания V = 100м/мин

f = 0.20мм/об d = 2.0мм

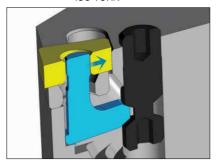
Прерывистое торцевое точение



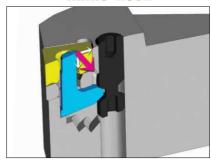
► RHINORUSH пластины

- Маленькие пластины с исключительной надёжностью и идентичной толщиной с ISO пластинами
- Мощное усилие закрепления пластин благодаря рычажному зажиму
- Стабильная стойкость инструмента, как и подобает пластинам малого габарита
- Стабильная стойкость при прерывистом резании и точении на высоких подачах
- Применимы в крупносерийном производстве

Техническое руководство


ТЕХНИЧЕСКОЕ РУКОВОДСТВО

> RHINORUSH система крепления


RHINORUSH система рычажного зажима пластины надёжно зажимает по двум направлениям

ISO TURN

Усилие зажима в одном направлении

RHINO RUSH

Усилие зажима в двух направлениях

Инновационная система крепления по двум направлениям значительно превосходит в жёсткости и стабильности систему зажима пластин на ISO державках

Рекомендуемое усилие закрепления

Используйте специализириванные динамометрические ключи для определения усилия зажима									
Обозначение рычага	Обозначение рычага Обозначение винта Размер резьбы Шестигранный ключ Примечание								
LCL 08-NX	LCS 3-NX	M6 X 1.0	2.5мм	Наружная	3.0Nm				
LCL 09-NX	LCS 3	M6 X 1.0	2.5мм	Наружная	3.0Nm				
LCL 08B-NX	LCS 3B	M5 X 0.8	0.0	D	O EN				
LCL 09B-NX	LCS 3B	М5 X 0.8 2.0мм		Внутренняя	2.5Nm				
LOL 44 NV	LCS 4	M8 X 1.0	0.0	Наружная	4 ONless				
LCL 11-NX	LCS 4S	IVIO X 1.U	3.0мм	Внутренняя	4.0Nm				

Примечание: Придерживайтесь рекомендациям при зажиме пластин серии RHINORUSH на державку.

Выбор стружколомающей геометрии в зависимости от обрабатываемого материала

FG: Низкие усилия резания, применим для чистовой обработки

FM: От получистовой до получерновой обработки

FT: Превосходное стружкодробление при обработке на различных глубинах резания

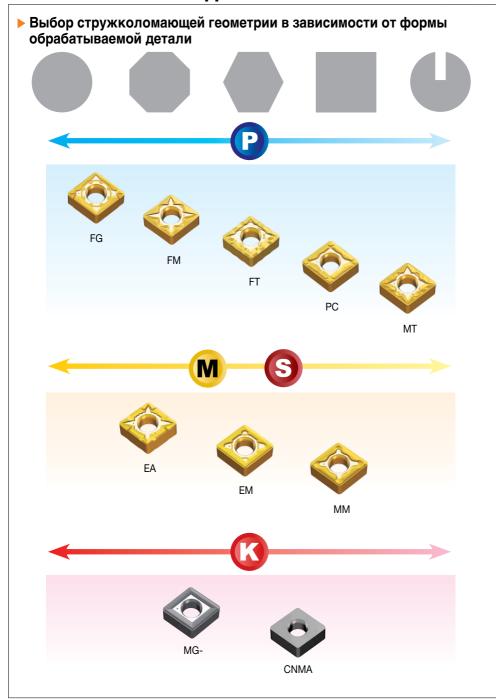
РС: От получистовой до черновой обработки

МТ: Самая прочная геометрия

ЕА: Качественное стружкодробление при точении вязких материалов на низких подачах

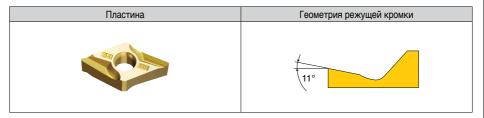
ЕМ: Острая режущая кромка обеспечивает мягкое усилие резание

ММ: Геометрия для черновой обработки



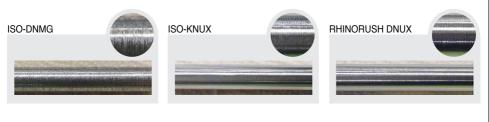
MG-

CNMA: Гладкая пластина для обработки чугуна


MG-: Прочная режущая кромка для черновой обработки чугуна

► DNUX пластина

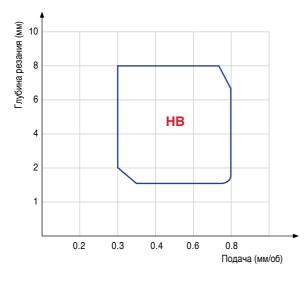
■ Стружколомающая геометрия



■ Сравнение усилия резания

Заготовка	Vc(м/мин)	f(мм/об)	Глубина резания	сож	Вид обработки
Ст. 45 (Ø20мм)	200 м/мин	0.3 мм/об	3.0 мм	нет	Наружное беспрерывное точение

■ Шероховатость обработанной поверхности


▶ НВ стружколом

■ Установка пластин серии TURN RUSH на державки с ISO креплением пластин Для максимально эффективного использования инструмента, специалисты компании TaeguTec рекомендуют использовать оригинальную державку под пластины TurnRush, но так же есть возможность устанавливать пластины на державки ISO.

Обозначение	ие Форма Подкладная пластина под крепление Н-типа		Подкладная пластина под крепление Р-типа
CNMX 16		LSC 54-NX	LSC 53-NX LSC 53-NXS
SNMX 15		LSS 54-NX	LSS 53-NX LSS 53-NXS

- LSC 53-NX: Одинаковый размер IC в сравнении с режущей пластиной
- LSC 53-NXS: Меньший размер IC в сравнении с режущей пластиной

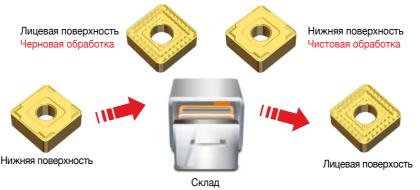
Диапазон стружкодробления

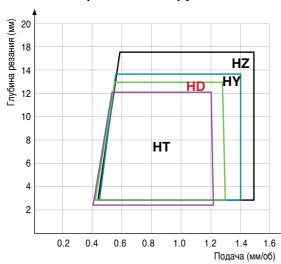
- Пластина: CNMX 160712 HB
- Скорость резания: 150 м/мин
- Материал: Ст. 45

10

Двусторонние черновые пластины

CNMD / SNMD





Нижняя поверхность

- Ориентация на чистовую обработку
- Первоочерёдно рекомендуется использовать пластины с нижней поверхности для чистовых операций
- Геометрии для черновной обработки рекомендуются применять после использования чистовых кромок

Область применения стружколомов

- Пластина: CNMD 250924 HD
- Скорость резания: 100 м/мин
- Материал: Ст. 45

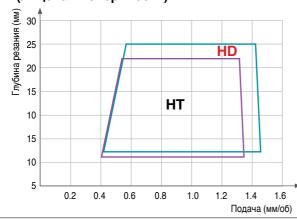
Режимы резания для нижней поверхности

	Глубина резания (мм)	Подача (мм/об)
Режимы резания	3.0 (2.0-5.0)	0.6 (0.4-0.8)

Описание стружколомающих геометрий

	Форма		Приоритет использования			
Стружколом		Применение и особенности	Стружкодробление	Прочность режущей кромки	Усилие резания	
НТ	0	 Низкие усилия резания для обработки на маломощных станках Отличный отвод стружки благодаря переменной фаске и геометрии стружколома 	0		0	
HD	0	 Для всех видов валов, шатунов и деталей в судостроении Плавная геометрия стружколома гарантирует эффективный отвод стружки 	0		0	
НҮ	9	 Для больших глубин резания и высоких подач Мощная режущая кромка благодаря широкой передней поверхности и большому переднему углу 	0	0		
HZ	9	 Для больших глубин резания и высоких подач Сверхмощная режущая кромка благодаря широкой передней поверхности и большому главному углу Подходит для высоких режимов резания 	0	0		

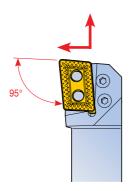
▶ Двусторонние пластины с шириной режущей кромкой - 32 мм


■ Режимы резания на черновую обработку (лицевая поверхность)

Обозначение	Подача (мм/об)	Глубина резания (мм)		
SNMD 310924 HD	0.60 - 1.50	7.0 - 25.0		
SNMD 310924 HT	0.50 - 1.40	6.0 - 22.0		

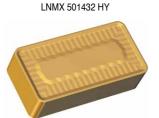
■ Режимы резания на чистовую обработку (нижняяя поверхность)

	Подача (мм/об)	Глубина резания (мм)
Режимы резания	0.40 - 0.80	2.0 - 5.0

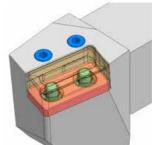

Область применения стружколомающих геометрий (лицевая поверхность)

- Пластина: SNMD 310924
- Скорость резания: 100 м/мин
- Материал: Ст. 45

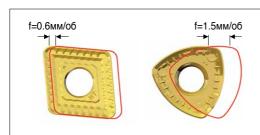
► НХ стружколом


- Многоцелевое применение
- 80 -ти градусные пластины могут перекрывать задачи пластин CNMG/CNMM
- 95 градусов угол в плане позволяет работать как при продольном, так и торцевом точении

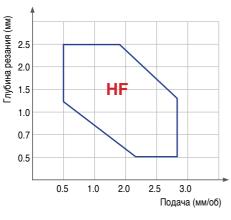
► HD, НҮ стружколом

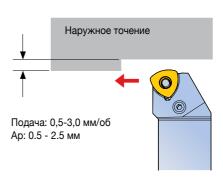

- Длина режущей кромки в 50мм позволяет снимать до 45мм на сторону
- Прямолинейная режущая кромка предназначена для работы на тяжёлых режимах на высокомощных станках
- Пластины HD применяются для беспрерывного точения, HY для чернового прерывистого точения

 Уникальная система крепления пластин в виде 2-х глухих отверстий обеспечивают стабильно крепкое усилие закрепления пластин



Увеличение подачи за счёт использования иновационной геометрии HF


- Оптимизированная стружколомающая геометрия
- Геометрия пластины спроектирована для работы на высоких подачах
- Позитивная геометрия минимизирует нагрузку на станок
- Длительная стойкость инструмента благодаря уникальной гемеотрии пластины
- Зажим пластины к подкладной по трём направлениям даёт неоспоримое преимущество к пластинами конкурентов.
- Конфигурация пластины расчитана для работы на ультравысоких подачах
- Максимальная подача Змм/об, Максимальная глубина резания 2,5мм


Подача = ISO Пластина X 2.5 = идентичная шероховатость

▶ Область применения стружколома НF при наружном точении

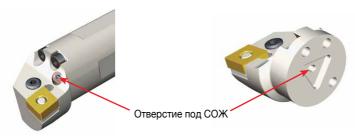
- Пластина: BNMX 150720 R-HF - Скорость резания: 150 м/мин

- Материал: Ст. 45

▶ Модульные головки и хвостовик

■ Различные насадные головки

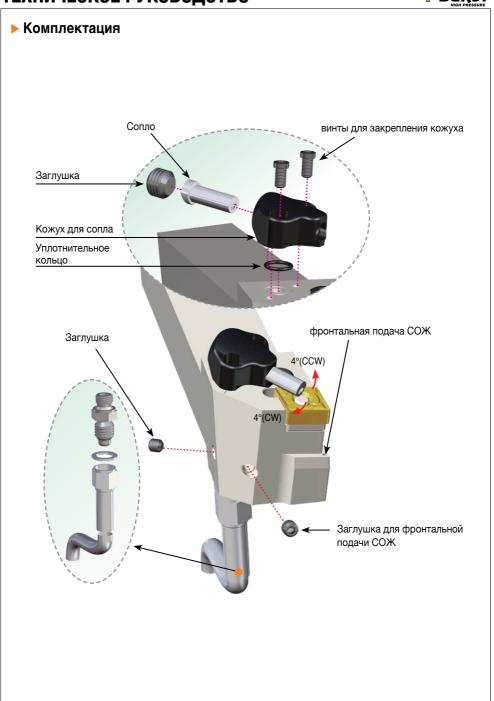
например:


HE-PCLNR/L

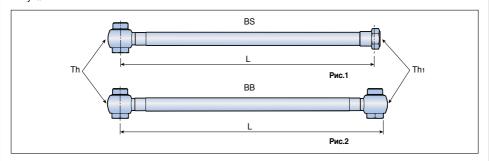
HE-PDUNR/L

HE-SCLCR/L

HE-SDUCR/L


■ Внутренняя подача СОЖ через инструмент

■ Хвостовик

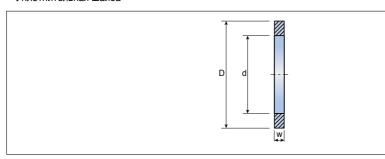


▶ Комплектующие

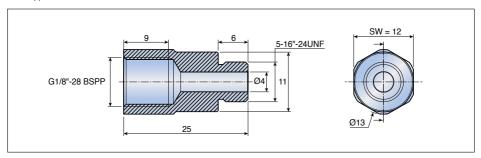
■ Рукав

Обозначение		Размеры (мм)					
		L(mm)	Th	Th ₁	Максимальное давление(Bar)	Рис.	
TB HOSE	G1/8-7-16-200BS	200	G1/8"-28 BSPP	7/16"-20 UNF (Flare 37°)	260	1	
	G1/8-7/16-250BS	250	G1/8"-28 BSPP	7/16"-20 UNF (Flare 37°)	260	1	
	G1/8-G1/8-200BB	200	G1/8"-28 BSPP	G1/8"-28 BSPP	260	2	
G1/8-G1/8-250BB 5/16-7/16-200BS		250	G1/8"-28 BSPP	G1/8"-28 BSPP	260	2	
		200	5/16"-24 UNF	7/16"-20 UNF (Flare 37°)	200	1	
5/16-G1/8-200BS		200	5/16"-24 UNF	G1/8"-28 BSPP	200	1	

■ Адаптер


Обозначение

TB NIPPLE G1/8-7/16 UNF

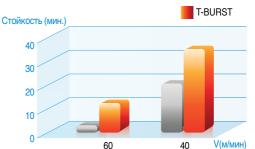

▶ Комплектующие

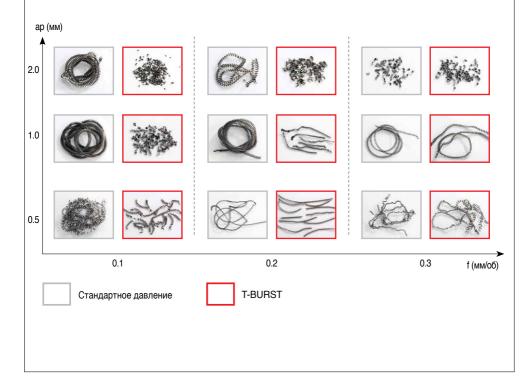
■ Уплотнительная шайба

Обозначение		Размеры (мм)						
00	Ооозначение		d	W				
TB COPPER	SEAL 1/8"	15	10	1				
	SEAL 5/16"	12	8	1				

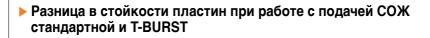
■ Соединитель

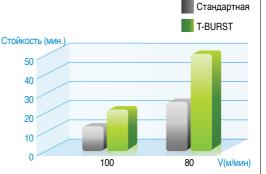
Обозначение

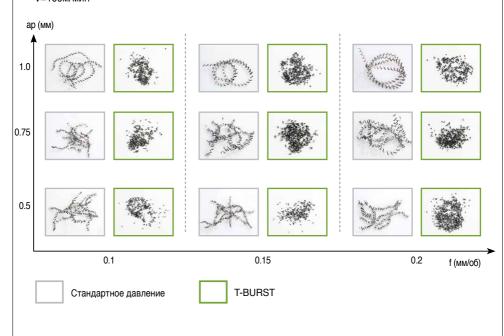

TB CONECTOR 5/16"-G1/8"


Стандартная

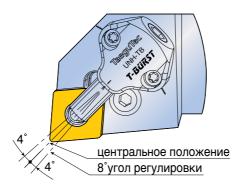
▶ Разница в стойкости пластин при работе с подачей СОЖ стандартной и T-BURST




- ▶ Разница в стружкодроблении пластин при работе с подачей СОЖ стандартной и T-BURST
- V=60м/мин



 Разница в стружкодроблении пластин при работе с подачей СОЖ стандартной и T-BURST

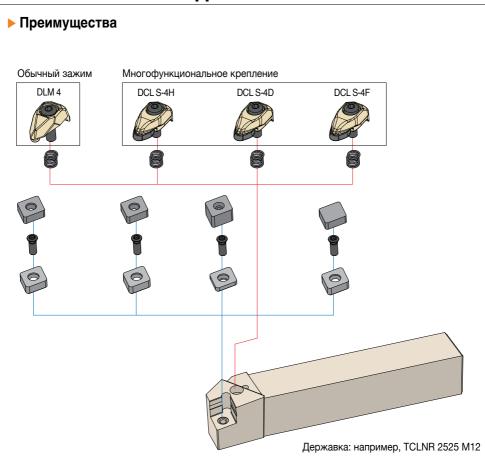

■ V=100м/мин

▶ Сопло может вращаться для регулировки суммарно на 8°(±4°)

Установка пластины

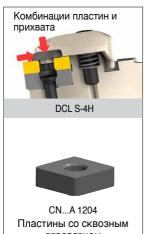
Нажмите на выдвижную трубку

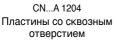
Используйте ключ для ослабления усилия рычага на пластину

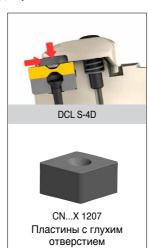


Нажмите на выдвижную трубку

Извлеките пластину

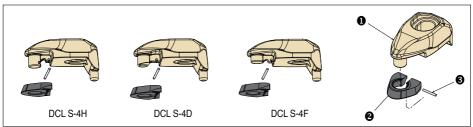


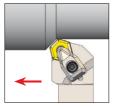

- Существующая державка Т-типа доступна только, если менять каждый вид крепления
- 3 типа пластин могут устанавливаться на одну и туже державку

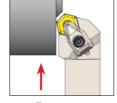


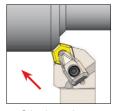
▶ Новое многофункциональное крепление DCL типа

■ Существующая державка Т-типа доступна только, если менять каждый вид крепления



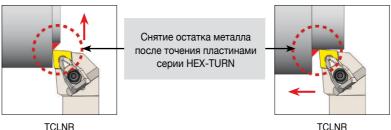

■ Новое многофункциональное крепление




Прижим	Обозначение	Комплектующие			Ппостино	Подкладная
		Прижим	2 ТС пластина	В Штифт	Пластина	пластина
	DCL S-4H	DCL 4H	DCL 4-PL	PIN 0683	CNA 1204	TSC 44
					DNA 1504	TSD 44
					DNA 1506	TSD 43
					SNA 1204	TSS 44
	DCL S-4D	DCL 4D	DCL 4-PL	PIN 0683	CNX 1207 CH	TSC 42
					DNX 1507 CH	TSD 42
					SNX 1207 CHX	TSS 42
	DCL S-4F	DCL 4F	DCL 4-PL	PIN 0683	CNN 1204	TSC 44
					CNN 1207	TSC 42
					DNN 1504	TSD 44
					DNN 1507	TSD 42
					SNN 1204	TSS 44
					SNN 1207	TSS 42

Руководство пользователя

- HEX-TURN пластины с 12 режущики кромками являются экономичным решением при операции торцевания, наружного точения и формирования фаски
- HEX-TURN пластины, имеющие при вершине 120 градусов, имеют преимущества по сравнению с 90градусными пластинами SNMG типа и перекрывают все операции, которые можно выполнить используя державки PSBNR/L, PSDNN и PSKNR для операций наружного точения и торцевания



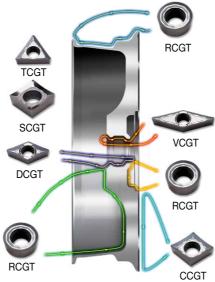
Наружное точение

Торцевание

Обработка фаски

■ При обработке пластинами серии HEX-TURN, на детали остаётся небольшой остаток в виде фаски, который легко удаляется за один проход ISO пластинами CNMG и WNMG.

TCLNR


Длина режущей кромки и максимальная глубина резания

Техническое руководство

Пластины для обработки алюминия

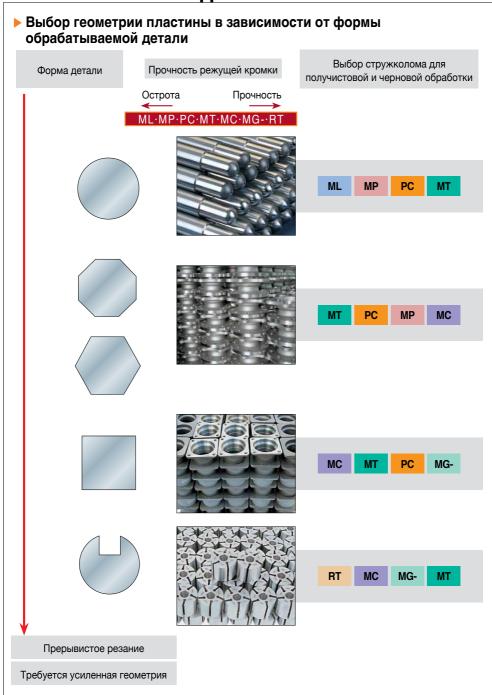
▶ FL стружколом

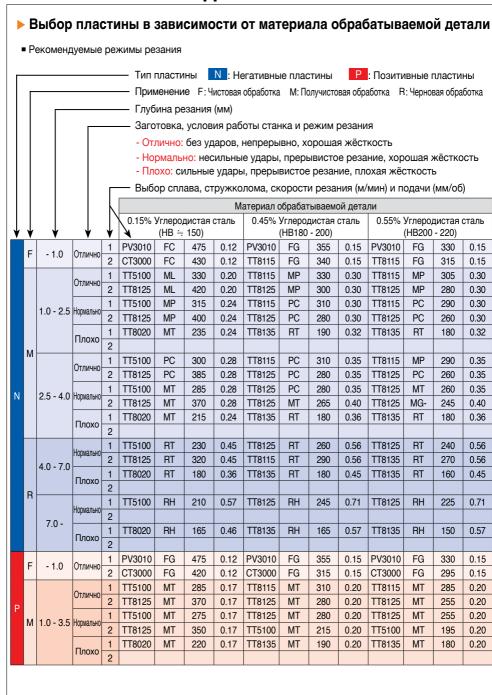
- Широкая область применения при обработке алюминия и цветных металлов
- Высокопозитивная режущая кромка минимизирует усилия резания и снижает вероятность возникновения нароста на режущую кромку

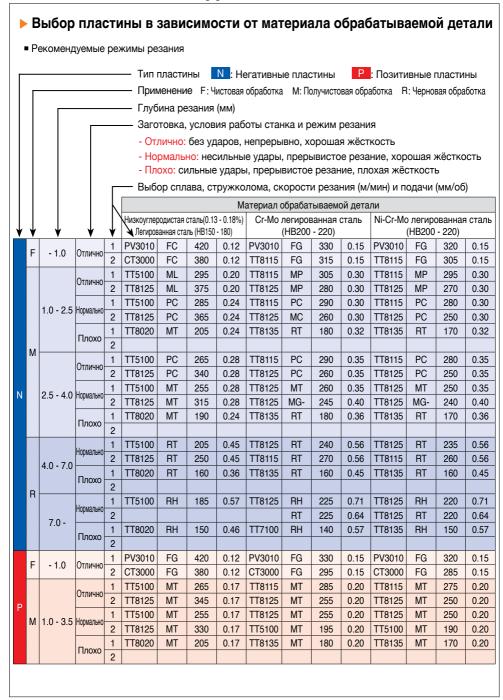
▶ ML стружколом

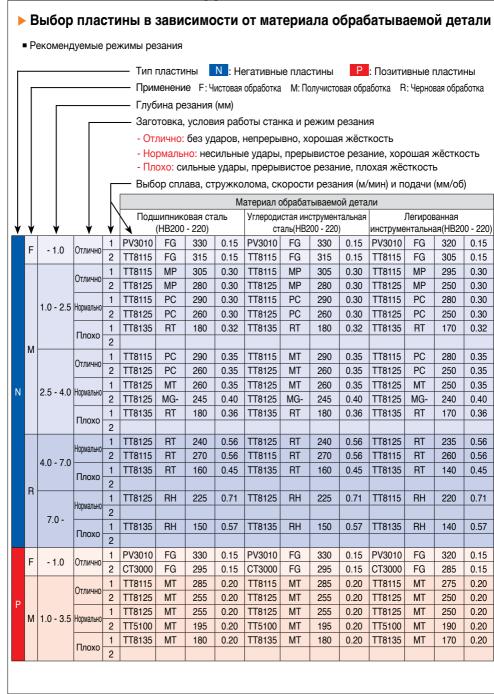
- Двухсторонняя негативная шлифованная пластина
- Острая режущая кромка обеспечивает низкие усилия резания
- Обеспечивает высокое качество обработанной поверхности и высокую стойкость инструмента при точении алюминиевых деталей
- Острая режущая кромка минимизирует нарост на режущей кромке

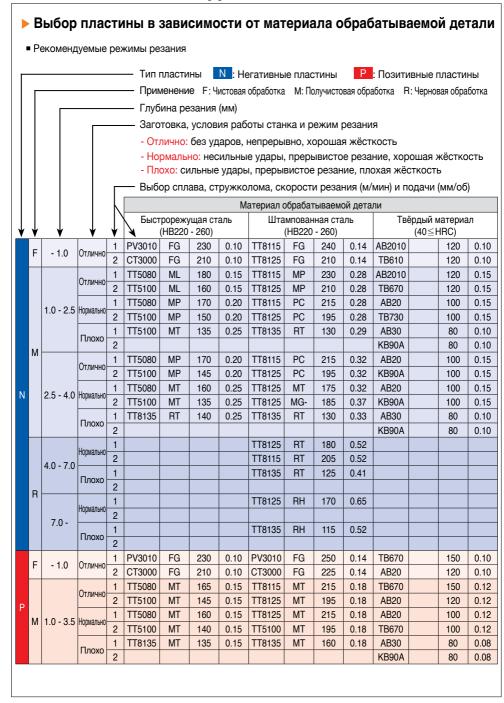
► CB PCD стружколом

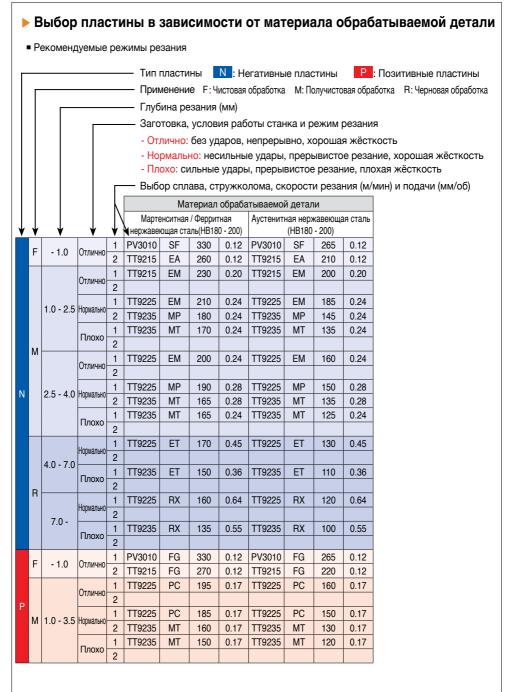

- Зубчатая режущая кромка гарантирует стружкодробление на всей длине режущей части, показывая хорошие результаты даже на низких подачах и глубинах резания
- Уникальная режущая кромка гарантирует превосходное стружкодробление

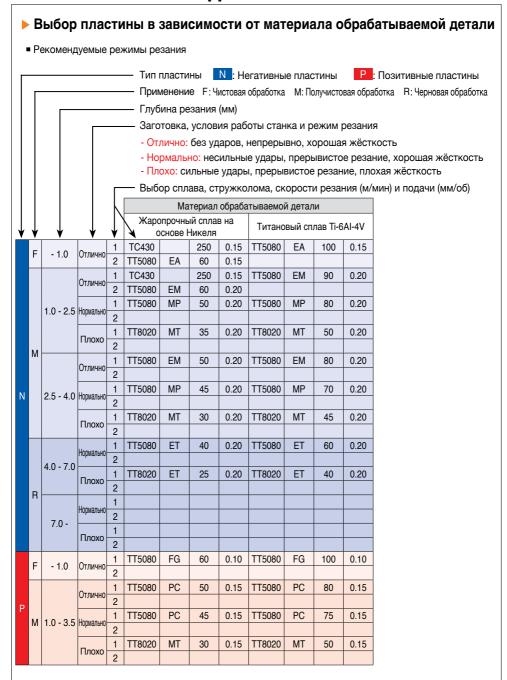


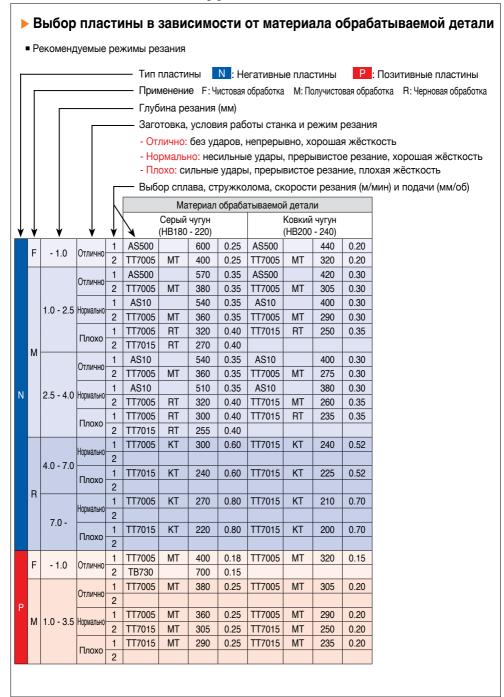


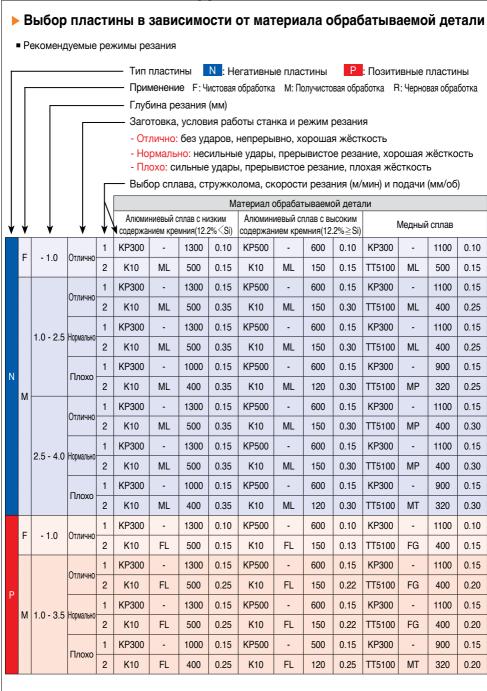


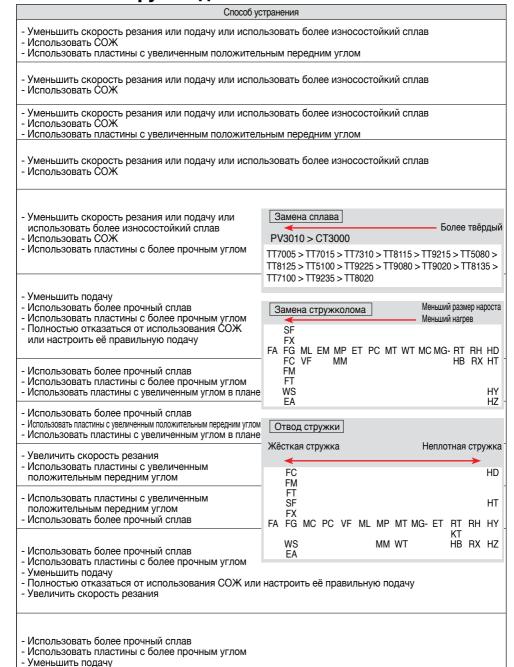







30

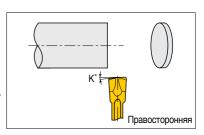




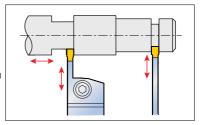
Техническое пуковолство

гехнич	łeckoe pykol	ВОДСТВО "-ТИКМ
	Проблема	Причина
Износ в		- Повышенная скорость резания или подача (легированная сталь и более 0,3% углеродистой стали)
виде лунки		- Материал заготовки содержит химические элементы высокой твёрдости (инструментальная сталь, штампованная сталь)
Износ по		- Повышенная скорость резания (легированная сталь и более 0,3% углеродистая стали)
задней поверхности		 - Материал заготовки содержит химические элементы высокой твёрдости (инструментальная сталь, штампованная сталь) - Увеличить скорость резания, при не естественном износе, вызванным низкой скоростью резания
Деформация		- Повышенная скорость резания или подача
Скалывание		- Повышенная подача - Прерывистое резание
Выкрашивание		- Низкая скорость резания
Выпрашностно		- Обработка материалов высокой твёрдости
Образование нароста на		- Низкая скорость резания
режущей кромке	有一种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种	- Вязкий материал
Механическое разрушение		- Повышенная подача при прерывистом резании
Термическое растрескивание	Marine well we have	- Многократные тепловые удары (прерывистое резание)

- Полностью отказаться от использования СОЖ или настроить её правильную подачу


-Отрезка и обработка канавок

T-CLAMP	TB2
TOPMICRO	TB21
TOPCUT	TB23
QUADRUSH	TB25
Решение проблем	TB26
Tailor-made бланк	TB27


Подбор пластин

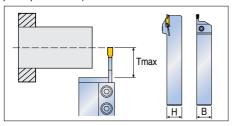
- Для максимально корректного выбора пластины и режимов резания, необходимо учитывать следующие параметры:
- Ширина прохода (ширина пластины)
- Тип стружколома
- Угол в плане
- Радиус при вершине
- Марка твёрдого сплава
- Ширина резания (WOC) и глубина резания (DOC)
- Формула DOC = 8xWOC применяется при обработке стали. Например, максимальная глубина резания DOC для пластины шириной 3мм составляет 24мм при отрезке прутка диаметром 48мм
- Нейтральная пластина с углом в плане 0 обеспечивает максимальную глубину резания DOC
- Угол в плане
- Для избежания заусенцев используйте пластины с углом в плане
- Возможно правостороннее и левостороннее исполнение пластины (R и L), с вершиной угла в направлении обработанной поверхности
- Увеличение угла в плане позволяет избежать заусенцев, но влечёт за собой ухудшение чистоты поверхности и снижение стойкости инструмента.
- Если при обработке допускается наличие заусенцев, рекомендуется использовать нейтральные пластины

Крепление пластины

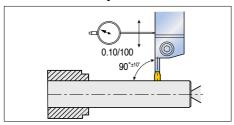
- Державки с монолитным хвостовиком обеспечивают максимальную жёсткость
- Державки с автоматическим креплением рекомендуются только для радиальной обработки
- Державки с винтовым креплением рекомендуются для осевой и радиальной обработки

Усилие зажима винтов для державок

Винт	Рекомендуемое усилие зажима (N·m)					
SH M5X0.8	5.5					
SH M6X1	8.0					
SH M8X1.25	12.0					
OTT WOAT.23	12.0					

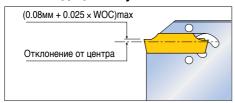

Техническое руководство

ТЕХНИЧЕСКОЕ РУКОВОДСТВО



Размер лезвия или державки

- Для снижения вибрации и отклонения выбирайте:
- Лезвие или державку с минимально возможным выступом (Ттах)
- Державку с максимальным размером хвостовика (Н)
- Высоту лезвия больше чем значение Ттах
- Лезвие или державку с максимальной шириной лезвия (максимально возможный посадочный размер пластины)



▶ Установка под углом 90°

 Очень важно, чтобы режущая пластина была установлена строго под углом 90° по отношению к оси детали, чтобы получить хороший результат обработки, а также уменшить вероятность возникновения вибрации.

Рекомендация по установке

- Отклонение пластины от центра должно быть в пределах ±0.1 мм
- Отрезку необходимо выполнять как можно ближе к патрону

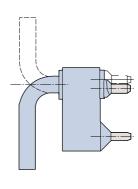
Рекомендации по выбору пластины

- Использовать пластину с углом в плане 0°
- Использовать лезвие максимального размера
- Минимально возможная ширина резания

Рекомендации по обработке

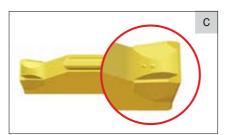
- Оптимально выбранные скорость резания и подача позволяют улучшить качество обработки
- Используйте большое количество СОЖ (кроме керамических пластин АВЗО)
- При установке пластины в державку следить, чтобы поверхности были чистыми
- При обработке мягких материалов усилия резания может быть недостаточно для правильной посадки пластины в ячейке. При установке пластины используйте пластиковый молоток
- При работе на универсальных токарных станках закрепите каретку для предотвращения осевого перемещения во время отрезки

Рекомендации по использованию

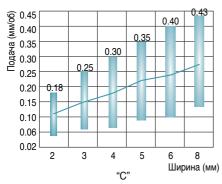

- Своевременно выполнять замену изношенных пластин. Стоимость новой пластины намного меньше стоимости ущерба, который может быть нанесён в результате выполнения обработки с помощью изношенной пластины
- Заменять лезвия с изношенными или повреждёнными карманами
- Запрещенно самостоятельно выполнять ремонт повреждённых карманов

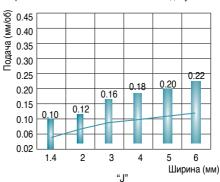
Стружоколом

- Стружколом предназначен для уменьшения ширины стружки, которая образуется в зоне высоких температур около режущей кромки.
- Получение стружки меньше ширины канавки даёт следующие преимущества:
- Устранение трения со стенками канавки
- Предотвращение скопления стружки, а также связанных с этим перегрузок
- Возможность обработки с увеличенной скоростью подачи
- Получение поверхностей без царапин, отсутствие необходимости в дополнительной операции обработки торца
- Скручивание стружки в мелкие спирали упрощает её удаление
- Скручивание стружки зависит от типа стружколома и режимов обработки
- Для каждой операции выбирайте соответствующий стружколом


Снятие пластины

Рекомендации по выбору стружколома


- Для твёрдых и труднообрабатываемых материалов.
- Для общего применения по стали, легированной и нержавеющей стали
- Для средних и высоких подач



- Для мягких материалов, отрезки труб, обработки малых диаметров и тонкостенных деталей.
- Низкие силы резания и хорошее качество обработанной поверхности.
- Обработка в режиме малых и средних подач.
- Рекомендуемые подачи в зависимости от ширины пластины

Материал; SAE4140 (HB240)

Рекомендации приводятся для нейтральных пластин. Для правых R и левых L пластин снизить подачу на 20-40%.

Материал заготовки										
	Легированные	Аустенитные	Жаропрочные	Цветные	Чугун					
	стали	стали	сплавы	металлы						
Высокая ↑ Подача	С	С	С	С Бронза	С					
∀ Низкая	J	J	Ј Титан	J Алюминий						

· ‡ Диам. выступа

Рис 1

Puc 2

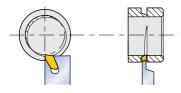
Практические рекомендации по токарной обработке

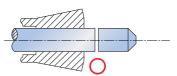
- Уменьшение заусенцев
- На станках с ЧПУ снизить подачу на 50% когда диаметр выступа равен ширине резания (WOC) (см. рисунок 1)
- Проверить высоту вершины резца по отношению к оси инструмента
- Использовать пластину с углом в плане
- Если используется пластина с углом в плане 0°, вести обработку с малой шириной прохода WOC
- Используйте улавливатель деталей (или настройте соосность)
- При работе с полыми прутками рекомендуется перед отрезкой обработать фаску при помощи расточного инструмента (см. рисунок 2)

- Увеличить скорость резания
- Использовать нейтральные пластины
- Выбрать пластину со стружколомом, который обеспечивает оптимальное стружкодробление
- Использовать твёрдый сплав с покрытием
- Повысить эффективность подачи СОЖ
- Устранить вибрацию
- Повышение плоскостности
- Проверить и заменить изношенные пластины
- Использовать нейтральные пластины
- Использовать максимально крупные лезвия, например TGB 32- вместо TGB 26-
- Увеличить ширину пластины и лезвия
- Уменьшить вылет лезвия
- Проверить положение инструмента (параллельность и перпендикулярность) относительно оси станка
- Оптимизировать зажим детали в патроне
- При работе на универсальных токарных станках, закрепить каретку
- Использовать большое количество СОЖ (кроме керамических пластин АВЗО)
- Уменьшить подачу
- Улучшение стружкодробления
- Заменить изношенную пластину
- Выбрать более подходящий стружколом
- Использовать нейтральные пластины
- Проверить положение инструмента (параллельность и перпендикулярность) относительно оси станка
- Использовать большое количество СОЖ
- Увеличить подачу
- Во время врезки на мгновенье прекратить подачу, чтобы стружка попала в канавку стружколома

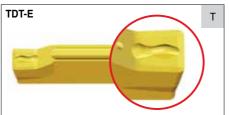
Техническое руководство

ТЕХНИЧЕСКОЕ РУКОВОДСТВО

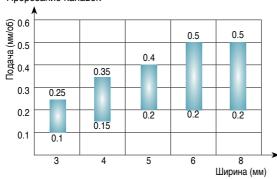


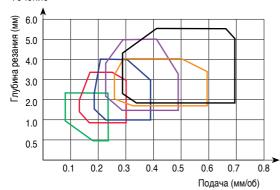

- Устранение вибрации
- Выполнять отрезку как можно ближе к патрону
- Минимизировать вылет лезвия
- Усилить зажим в патроне и проверить установку инструмента
- Изменить скорость вращения
- Увеличить подачу
- При работе на универсальных токарных станках, закрепить каретку
- Предотвращение выкрашивания режущей кромки
- Использовать пластину подходящего сплава и геометрии
- Использовать пластину с большим радиусом при вершине
- Уменьшить подачу в конце прохода
- Устранить вибрацию
- Увеличить скорость резания
- Использовать прочный сплав
- Увеличить жёсткость при настройке инструмента
- Устранить нарост на режущей кромке
- Предотвращение или уменьшение нароста на режущей кромке
- Использовать пластину подходящего сплава и геометрии
- Увеличить скорость резания
- Уменьшить подачу
- Увеличить подачу / концентрацию СОЖ

- Отрезка эксцентриковых труб
- Обычно, для обработки труб, рекомендуется использовать пластины с углом в плане 4 градуса.
 Однако при отрезке эксцентриковых труб может произойти резкое увеличение скорости подачи в момент прорезания стенки трубы, в результате чего может произойти повреждение режущей кромки. Для смягчения эффекта внезапного увеличения скорости подачи в момент прорезания стенки трубы рекомендуется использовать режущие пластины с главным углом в плане 8 градусов.



► Тип стружколома: "Т"

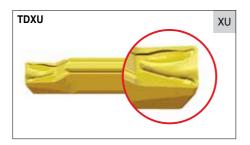

- Пластины со стружколомом "Т" типа применяются для точения и нарезания канавок по стали, легированной и нержавеющей сталей.
- Пластины, используемые с "Т" стружколомом, имеют центральный стружколомательный участок для стружкодробления в разных направлениях.
- Стружколомающая геометрия ТDXT идентична геометрии "Т". но с более положительными задними углами, для широкого использования в операциях внутреннего точения и торцевой обработки. Данные пластины - анлог шлифованным пластинам TDIT / TDFT пластинам.



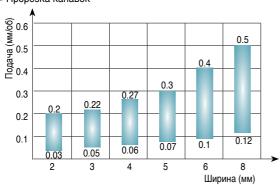
▶ TDT/TDXT таблица режимов резания

Прорезание канавок

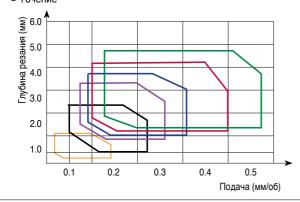
- Материал: Ст45
- Скорость резания: 100-180 м/мин


Техническое руководство

ТЕХНИЧЕСКОЕ РУКОВОДСТВО


► Тип стружколома: "XU"

- Первый выбор для общего применения при прорезании канавок и точения
- Превосходное стружкодробление
- От низких до средних подач при прорезании канавок и точения
- Одна пластина для наружной, внутренней и торцевой прорезки канавок и точения.



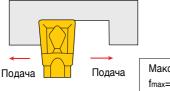
▶ TDXU таблица режимов резания

Прорезка канавок

Рекомендации по выбору пластин

- Ширина пластины
- Для максимальной эффективности обработки выбирайте пластины с максимально возможной шириной
- Эффективность стружкодробления также зависит от ширины пластины
- Узкие пластины улучшают стружкодробление на низких подачах
- Широкие пластины и прочные лезвия требуют большего усилия и высоких подач для получения главного заднего угла

- Радиусы при вершине продольное точение
- Выбирайте большой радиус при вершине для повышения стойкости инструмента

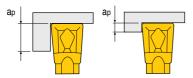

Чем больше радиус, тем меньше боковое усилие

 Выбирайте маленький радиус при вершине для снижения силы резания и при низких подачах узких пластин

Чем меньше радиус, тем больше боковое усилие

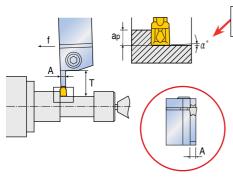
- Подача при точении
- Подача зависит от эффективности стружкодробления
- Максимальная подача зависит от ширины пластины и усилия резания
- Высокая подача и малый радиус при вершине снижают стойкость инструмента
- Максимальная подача не должна превышать значения радиуса при вершине
- Для лучшего стружкообразования при нарезании канавок, подача может выполняться прерывисто через небольшие интервалы.

Максимальная подача:


fmax= Wx0.075

Техническое руководство

ТЕХНИЧЕСКОЕ РУКОВОДСТВО


- Глубина резания
- Минимальная глубина резания равна радиусу при вершине
- Максимальная глубина резания зависит от максимально возможной силы резания
- Глубина резания зависит от стружкообразования
- Большая глубина резания приводит к большому отклонению и образованию большего угла в плане
- При малой глубине резания отклонение и угол в плане могуть быть слишком маленькими.

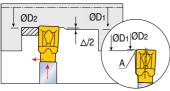
Максимальная глубина резания: apmax= W x 0.8

▶ Принцип токарной обработки с помощью инструментов серии T-CLAMP ULTRA PLUS

Вспомогательный угол в плане α° образуется в результате воздействия боковых сил и, в отличие от инструмента ISO, этот угол не является неизменным

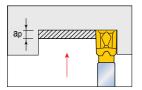
Вспомогательный угол в плане между пластиной и деталью

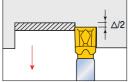
- Величина вспомогательного угла в плане зависит от:
- Подачи: f
- Глубины резания: ар
- Вылета: Т
- Скорости резания: Vc
- Обрабатываемого материала
- При правильном выборе данных факторов пластина (α°) выполняет "выглаживание", обеспечивая превосходное качество обработки поверхности и допуск



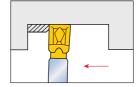
Чистовая обработка: коррекция диаметра

- При выполнении окончательной чистовой обработки необходимо учитывать коэффициент коррекции диаметра. После расточки желаемого диаметра направление обработки меняется на продольное. Именно тогда образуется отклонение от заданного диаметра. Если обработка продолжается без коррекции на инструмент, вершина А резца – в результате образования вспомогательного угла в плане – проникнет в заготовку несколько глубже, чем требуется (смотри рисунок). в результате получается 2 различных диаметра: ØD1 от нарезания канавки и ØD2 от точения. Разница между ØD1 и ØD2 - это отклонение диаметра, которое обозначается знаком Дельта Δ.


Коэффициент коррекции на инструмент рассчитывается следующим образом:



Ошибка


 Использование коэффициента коррекции на инструмент позволяет выдержать требуемый размер диаметра. Порядок выполнения операций приводится ниже.

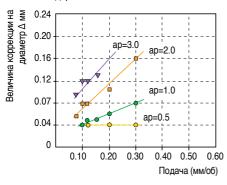
Выполнить канавку до конечного диаметра

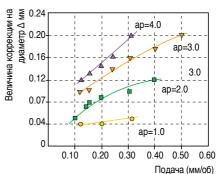
 Отвести инструмент на расстояние, равное значению Δ/2

Продолжить чистовую обработку

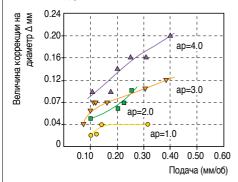
 На диаграммах приведены значения коррекций, полученные опытным путём при разных условиях обработки. Данные значения являются примерными и могут отличаться для разных обрабатываемых материалов и для разных типов державок

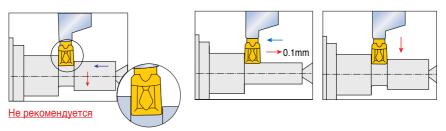
Техническое руководство


ТЕХНИЧЕСКОЕ РУКОВОДСТВО


Рекомендации:

Измерьте значение Δ для чистовой обработки, совершив пробную обработку в условиях, соответствующих заданным. При этом не следует обрабатывать заготовку до заданного диаметра.


Пластина: TDT 3.00E-0.40 Державка: TTER 2525-3


Пластина: TDT 4.00E-0.40 Державка: TTER 2525-4

Пластина: TDT 6.00E-0.80 Державка: TTER 2525-6

Многофункциональное применение

Токарный инструмент серии T-Clamp является многофункциональным, он позволяет выполнять последовательную обработку:

обработка канавки с последующим точением. Однако переход от точения к обработке канавки требует соблюдения основного принципа работы с инструментом серии T-Clamp, который устраняет вероятность поломки пластины. Этот принцип заключается в устранении вспомогательного угла в плане, который образуется во время точения, но который недопустим при обработке канавки.

Обработка радиуса или фаски

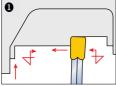
Не рекомендуется

При обработке угла или фаски с радиусом большим, чем радиус при вершине режущей кромки, всегда требуется комбинация перемещений в двух направлениях. Проблемы, такие как поломка пластины, возникают только в том случае, если пластина имеет контакт с заготовкой по всем кромкам, так как поломка происходит из-за одновременного воздействия на пластину сил, которые имеют разное направление: F1 и F2 - как показано на рисунке ниже

■ Рекомендуемая последовательность обработки, позволяющая оптимизировать процесс и избежать поломки пластины

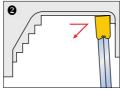
Техническое руководство

ТЕХНИЧЕСКОЕ РУКОВОДСТВО

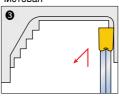


Обработка между стенок

Одно из наиболее важных преимуществ системы T-CLAMP ULTRA PLUS - возможность обработки канавок между стенками. Для получения наилучшего результата рекомендуется следующая последовательность операций:

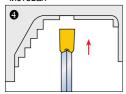

Оставлять возле стенок необработанный материал толщиной Z и вести обработку ступенчато. Ступеньки из необработанного материала должны иметь большую толщину, чем значение Z.

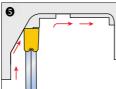
Черновая

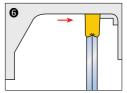


Z значение=0.2 - 0.3мм

Черновая

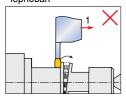



Чистовая

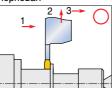


Чистовая

Чистовая



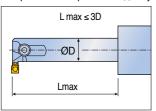
Устранение эффекта "петли"

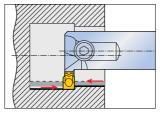

При точении края прутка или при нарезании канавки между двумя стенками, может образоваться "петля"

Устранение эффекта "петли"


Черновая

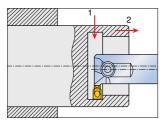
Черновая


Чистовая



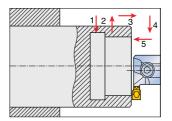
Оптимизация обработки внутренней поверхности

- Для первого чернового прохода используется одна вершина режущей пластины
- Другая вершина режущей пластины используется для получистового или чистового прохода в обратном направлении
- При выходе инструмента удаляется снятый материал.
- Ускоренный возврат к исходному пазу, продолжение торцового точения по направлению к центру.



Эффективное использование вершины пластины

Улучшение токарной обработки глухих отверстий

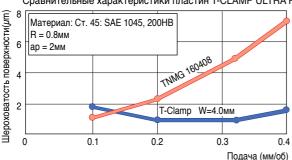

Токарная обработка глухих отверстий сопряжена с проблемой удаления стружки из зоны резания В момент достижения инструментом задней стенки отверстия стружка может быть зажата между стенкой отверстия и режущей пластиной, что является причиной поломки пластины.

Для устранения данной проблемы предлагаются два решения:

Первый выбор

- Сначала необходимо прорезать канавку возле задней стенки отверстия
- Затем продолжить точение по направлению изнутри наружу

Второй выбор


- Сначала необходимо прорезать канавку возле задней стенки отверстия
- Затем отвести инструмент к торцу детали. Выполнить точение по направлению снаружи внутрь.

Качество обрабатываемой поверхности

■ Превосходное качество обработанной поверхности позволяет избежать шлифовки. Токарная обработка с помощью инструмента серии T-CLAMP ULTRA PLUS отличается непревзойдённым качеством обработанной поверхности, которого невозможно добиться с помощью инструмента ISO. Фактически, обработанная поверхность, полученная с применением инструмента серии T-CLAMP ULTRA PLUS. по качеству не уступает поверхности, полученной в результате шлифовки.

Сравнительные характеристики пластин T-CLAMP ULTRA PLUS и инструмента ISO

Расчёт необходимой мощности для разных режимов резания

Точение

$$P = \frac{Kc \cdot ap \cdot f \cdot Vc}{\eta \cdot 45 \cdot 10^3} [HP]$$

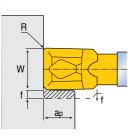
Отрезка / Обработка канавки

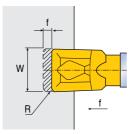
$$P = \frac{Kc \cdot W \cdot f \cdot Vc}{\eta \cdot 45 \cdot 10^3} [HP]$$

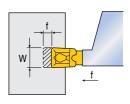
Торцевая обработка

$$P = \frac{Kc \cdot W \cdot f \cdot Vc}{\eta \cdot 45 \cdot 10^3} [HP]$$

Точение

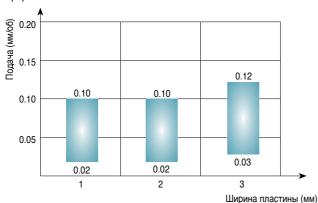

$$P = \frac{Kc \cdot ap \cdot f \cdot Vc}{\eta \cdot 61 \cdot 10^3} \text{ [kw]}$$

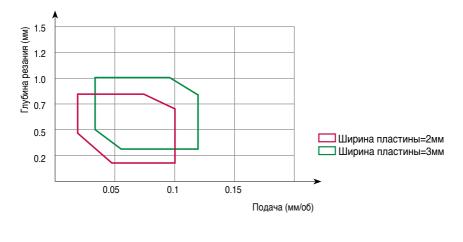

Отрезка / Обработка канавки


$$P = \frac{Kc \cdot W \cdot f \cdot Vc}{\eta \cdot 61 \cdot 10^3} \text{ [kw]}$$

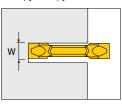
Торцевая обработка


$$P = \frac{Kc \cdot W \cdot f \cdot Vc}{\eta \cdot 61 \cdot 10^3} [kw]$$




При наличии значения Кс может быть использовано специальное усилие резания (H/мм²) $η - K\Pi Д (η \approx 0.8)$

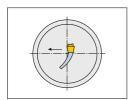
■ Прорезка канавок

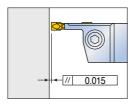

■ Точение

▶ Выбор инструмента для прорезки торцевой канавки / точения

 Для повышения производительности соблюдайте три нижеприведённые рекомендации по выбору инструмента

В зависимости от формы обрабатываемой канавки выбирайте по возможности самые широкие пластины и инструмент

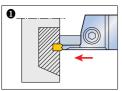

В зависимости от наибольшей глубины канавки выбирайте по возможности инструмент с наименьшим вылетом пластины

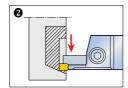

В зависимости от начального диаметра канавки выбирайте по возможности инструмент, с помощью которого можно обработать канавку как можно большего диаметра.

Настройка инструмента

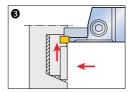
■ Перед обработкой проверьте и отрегулируйте следующие параметры инструмента:

Проверить высоту режущей кромки у осевой линии, выполнить точение в лёгком режиме к центру и проверить наличие заусенцев.


Проверить параллельность режущей кромки относительно обработанной поверхности. Правильное положение пластины обеспечивает высокое качество поверхности при точении торца в обоих направлениях.


Оптимизация процесса обработки

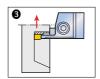
■ Черновая обработка


Последовательность операций при черновой обработке торца с помощью инструмента серии T-CLAMP ULTRA PLUS

Прорезка начального диаметра

Точение по направлению от центра

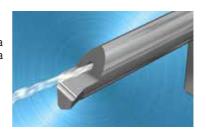
Ускоренный возврат к исходному пазу, продолжение торцового точения по направлению к центру.


- При прорезке торцовых канавок скорость резания должна быть на 40% ниже, чем при токарной обработке торца
- Чистовая обработка
 Последовательность операций при чистовой обработке торца с помощью инструмента серии Т-CLAMP ULTRA PLUS

После прорезки начальной канавки выполнить точение от центра

Выполнить чистовую обработку наружного диаметра и радиуса

Ускоренный возврат к исходному пазу, продолжение торцового точения по направлению к центру


Выполнить чистовую обработку внутреннего диаметра

 При прорезке торцовых канавок скорость резания должна быть на 40% ниже, чем при токарной обработке торца

TOPMICRO

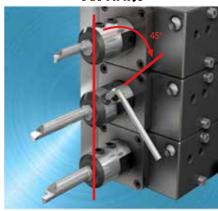
▶ TOPMICRO

- Внутренняя обработка Ømin 0.6мм
- Лучшее решение в точении, профилировании, обработки внутренних и торцевых канавок на деталях малого диаметра
- TiAIN покрытие гарантирует высокую стойкость инструмента
- Диаметр хвостовиков Ø4мм и Ø7мм
- Подача СОЖ через инструмент непосредственно на режущую кромку
- Хороший стружкоотвод с зоны резания

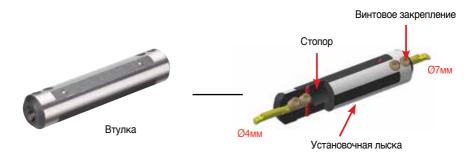
▶ Номенклатура

Широкая линейка инструмента под различные задачи

Точение и обработка фаски	МІNТ Тип Міп. диаметр точения: Ø0.6-7.0мм	
Точение и профилирование	МІNР Тип Міп. диаметр точения: Ø2.8-5.0мм	
Точение, обработка фаски под 45 градусов	МІNС Тип Міп. диаметр точения: Ø5.0-6.8мм	
Прорезка канавки	МІNG Тип Міл. диаметр точения: Ø2.0-6.8мм	
Прорезка глубокой торцевой канавки	МІNF Тип Міп. диаметр точения: Ø15мм	
Прорезка торцевой канавки	МІNF Тип Міп. диаметр точения: Ø6.0-8.0мм	
Прорезка торцевой канавки	МІNА Тип Міп. диаметр точения: Ø6.0мм	
Профилирование (полный радиус)	МІNR Тип Міп. диаметр точения: Ø5.0-6.8мм	
Нарезка резьбы	МІNN Тип Міп. диаметр точения: Ø4.0-7.0мм	
Обратное точение	МІNВ Тип Міп. диаметр точения: Ø3.0-7.0мм	


Втулки

- Угловое крепление втулок позволяет беспрепятственно извлекать и устанавливать резцы
- Уникальная система закрепления инструмента идеально подходит для станков швейцарского типа и мультишпиндельных агрегатов
- Уменьшение вспомогательного времени на переналадку


Традиционный тип закрепления

TOPMICRO

- ТОРМІСКО втулки имеют стопор внутри отверстия:
- Предотвращает перемещение инструмента во время обработки
- Есть возможность начинать операцию без процесса переналадки после индексирования

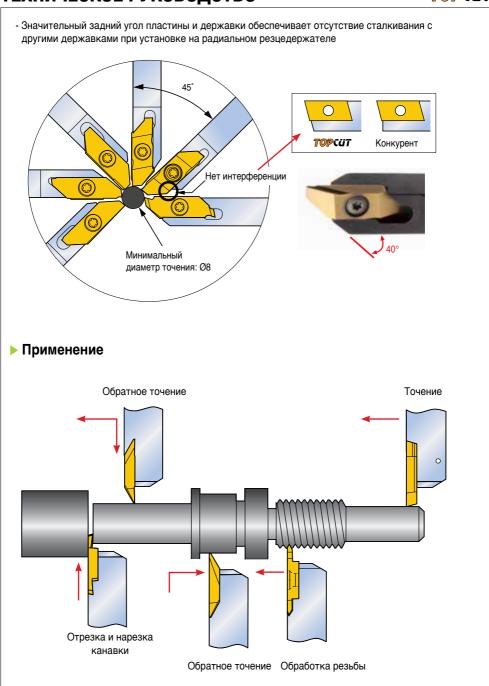
для **ТОРМІСКО** (Ø4мм or Ø7мм)

Преимущества пластин:

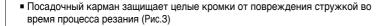
- Отличное качество поверхности и повторяемость благодаря высокоточным шлифованным пластинам
- Мелкозернистая шлифованная режущая кромка предотвращает микро-сколы и способствует лучшей стойкости
- Стружколом специально разработан для низких усилий резания и хорошего отвода стружки

Преимущества державок

- Предназначены для установки на небольших токарных автоматах
- Прецизионные шлифованные державки обеспечивают точную установку на станок и способствуют стабильной обработке
- Пластина устанавливается на державку с двух сторон



- Пластина и посадочное место в форме ласточкиного хвоста гарантирует стабильное крепление



QUADRUSH

- 4 Режущие кромки для лучшей экономии
- 3 точки контакта вдали от режущей кромки (Рис.1)
- Точное позиционирование пластины при установке
- Даже если режущие кромки повреждены, можно использовать любую целую кромку (Рис.2)

TQC

TO.I

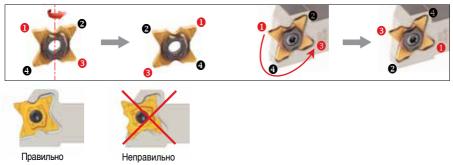
- Прорезка канавок и отрезка труднообрабатываемых материалов
- Работа на средних и высоких подачах

■ TQJ

- Позитивная режущая кромка предназначена для обработки мягких материалов, отрезки труб, деталей малого диаметра и тонкостенных деталей.
- Работа на низких и средних подачах

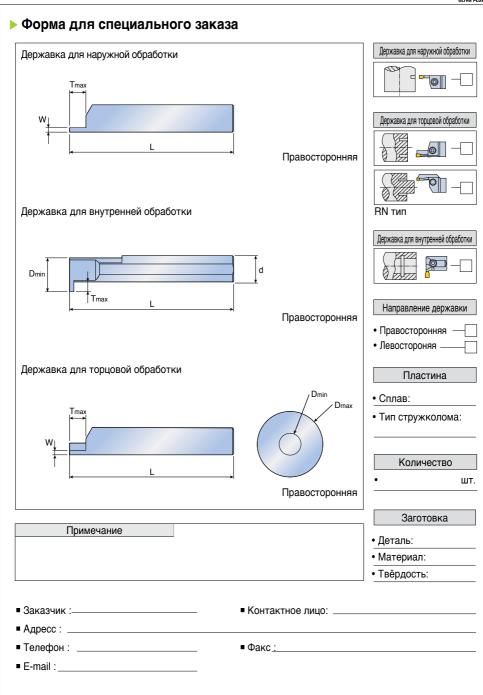
■ TQS

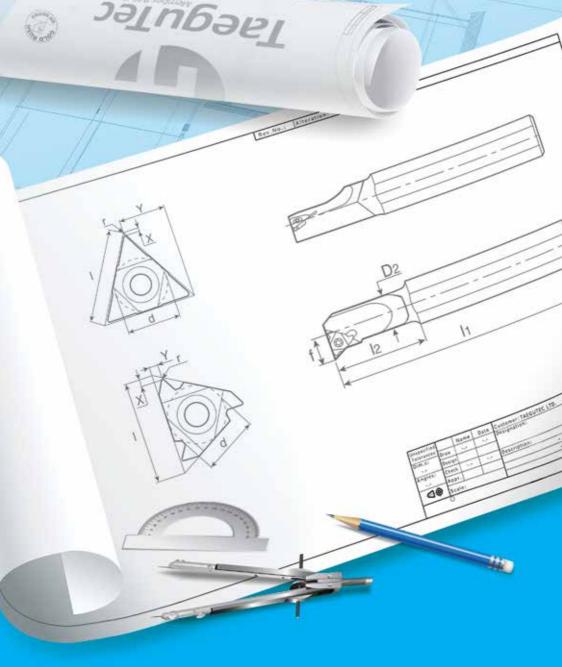
- Прочная режущая кромка с высокопозитивной геометрией
- Ширина пластин от 0,5 до 8,2 мм как стандартные, так и специальные
- Сплав СТ3000 (кермет) обеспечивает высокое качество обработанной поверхности и высокую стойкость при работе на высокой скорости резания.



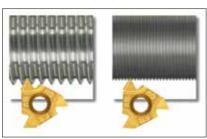
- Уникальный ключ и винт для крепления пластины
- Пластина устанавливается на державку с двух сторон
- Главное преимущество при работе на станках швейцарского типа
- Боковой стопорный винт
- Обеспечивает жёсткое закрепление на державке
- Используется 2 разных регулировочных винта
- Левосторонняя державка: правосторонний винт
- Правосторонняя державка: левосторонний винт

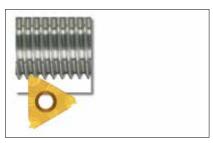
Позиционирование пластины


Решение проблем


Проблема	Причина	Решение				
Быстрый износ по задней поверхности. Низкая стойкость инструмента	- Слишком высокая скорость резания - Твёрдый сплав со слишком низкой износостойкостью	- Уменьшить скорость резания - Использовать сплав повышенной твёрдости или твёрдый сплав с покрытием				
Образование лунки. Низкая стойкость.	- Высокая температура резания на передней поверхности пластины при высокой подаче и скорости	- Уменьшить подачу и скорость - Использовать сплав с покрытием				
Поломка режущей кромки / пластины	- Высокая нагрузка на пластину - Слишком узкая пластина - Непрочный сплав	- Использовать пластину большей ширины - Уменьшить подачу и скорость - Использовать более прочный сплав				
Пластическая деформация	- Высокая температура уменьшает твёрдость сплава	- Использовать пластину с большим радиусом при вершине и уменьшить подачу и скорость - Использовать более твёрдый сплав				
Отвод стружки. Стружка в форме "спагетти" завивается под державку и мешает обработке	- Маленькая глубина резания - Слишком медленная подача - Очень широкая пластина - Очень большой радиус пластины	- Проверить стружкообразование - Увеличит глубину резания - Увеличить подачу - Использовать узкую пластину с меньшим радиусом				
Низкое качество обработанной поверхности	- Недостаточная глубина резания (меньше чем радиус при вершине)	- Увеличить глубину резания до минимального значения радиуса				
Вибрация и низкое качество обработанной поверхности	- Недостаточный передний угол между пластиной и деталью вызывает трение	- Увеличить подачу для получения подходящего угла - Перед началом обработки проверить параллельность передней режущей кромки к детали				

Tailor-made бланк




-Резьбонарезание

T-THREAD	TC2
TS-THREAD	TC8
T-TAP	TC10
Решение проблем	TC15

Типы и профили резьбонарезных пластин

- Неполный профиль
- Применяется для нарезания резьбы широкого диапазона шагов с неизменным углом (60° или 55°)
- Пластины с малым радиусом при вершине позволяют нарезать резьбу с наименьшим шагом
- Требует дополнительной операции по завершению обработки наружного / внутреннего диаметра
- Не рекомендуется использовать в серийном производстве
- Устраняет необходимость использования нескольких резьбонарезных пластин

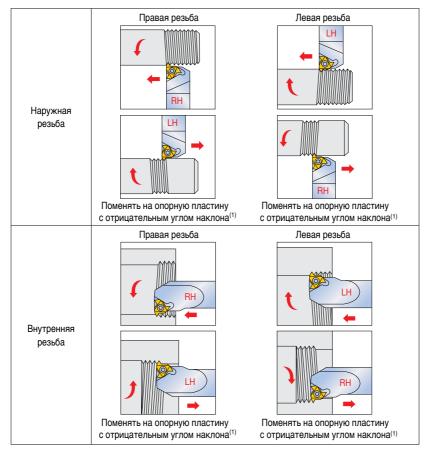
- Полный профиль
- Формирует завершённый профиль резьбы
- Радиус при вершине позволяет нарезать резьбу довольно большим шагом
- Рекомендуется для серийного производства
- Подходит для нарезания резьбы с профилем только одного размера

Геометрии пластин

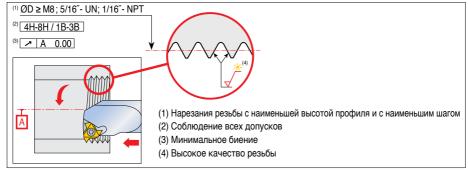
- Геометрия М
- Первый выбор по основным группам обрабатываемых материалов
- Спечённый стружколом позволяет добиваться оптимального стружкодробления
- Геометрия В
- Пресованный стружколом с острой режущей кромкой для низких усилий резания
- Лучшее решение для обработки нержавеющей стали, жаропрочных сплавов и низкоуглеродистых сталей
- Хороший стружкоотвод при обработке вязких материалов
- Хорошее качество резьбы
- Стандартный тип (без обозначения)
- Острая кромка для обработки вязких материалов
- Низкие усилия резания и стойкость к налипанию на режущую кромку
- Широкий диапазон прифилей и размеров
- Многозубая пластина
- Полнопрофильные 2-х и 3-х зубые пластины
- Высокая производительность за счёт снижения количества проходов
- Рекомендуется для массового производства
- Оптимальное распределение нагрузки на кромку

Геометрия В (например. 16ERB)

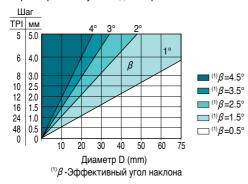
Геометрия М

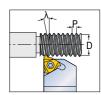

(например. 16ERM)

Стандартный тип Многозубая пластина (например. 16ER) (например. 16ER...-2M/3M)



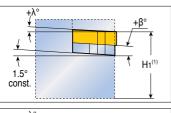
Способы нарезания резьбы


• ⁽¹⁾ См. страницу ТС4

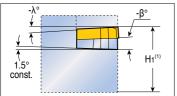

Особенности миниатюрных резьб

> Угол подъёма резьбы и выбор опорной пластины

■ Характеристики угла подъёма резьбы λ

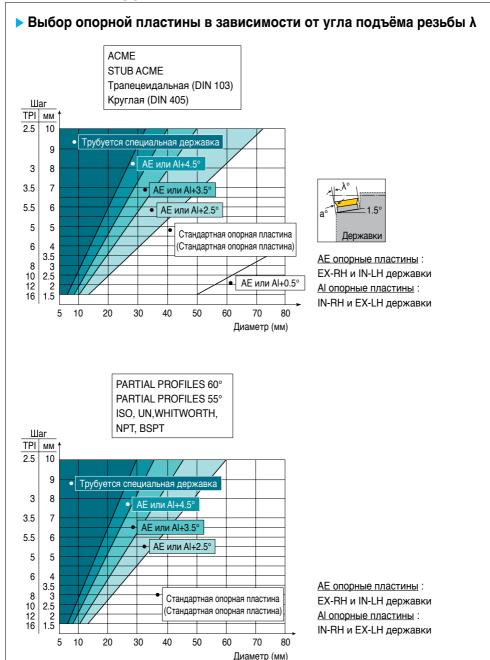

- Р Шаг (мм)
- D Средний диаметр резьбы (мм)
- λ Угол наклона

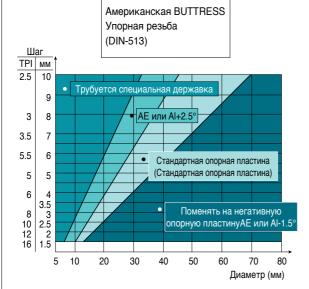
Выбор опорной пластины в зависимости от угла подъёма резьбы λ


■ (1) β=4.5°

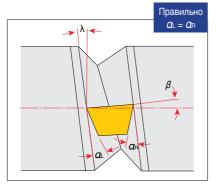
■ (1) B=3.5°

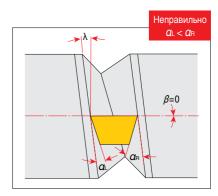
Стандарт													
Угол подъёма резьбы λ		>4° 3°-4°		2°- 3°		1°- 2°	1°- 2° 0°- 1°		Негативные опорные пластины				
	Угол наклона $oldsymbol{eta}$	4.5°	3.5°		2.5°		1.5°	0.5°		-0.5°		-1.5°	
l(d)	Державка		Обозначение опорной пластины										
16	EX RH OR IN LH	AE 16 +4.5	AE 16	+3.5	AE 16	+2.5	AE 16	AE 16	+0.5	AE 16	- 0.5	AE 16	-1.5
(3/8)	EX LH OR IN RH	Al 16 +4.	Al 16	+3.5	Al 16	+2.5	Al 16	Al 16	+0.5	Al 16	- 0.5	Al 16	-1.5
22	EX RH OR IN LH	AE 22 +4.5	AE 22	+3.5	AE 22	+2.5	AE 22	AE 22	+0.5	AE 22	-0.5	AE 22	-1.5
(1/2)	EX LH OR IN RH	Al 22 +4.	AI 22	+3.5	AI 22	+2.5	Al 22	AI 22	+0.5	Al 22	-0.5	Al 22	-1.5
27	EX RH OR IN LH	AE 27 +4.5	AE 27	+3.5	AE 27	+2.5	AE 27	Al 27	+0.5	AE 27	- 0.5	AE 27	-1.5
(5/8)	EX LH OR IN RH	Al 27 +4.	AI 27	+3.5	AI 27	+2.5	AI 27	Al 27	+0.5	Al 27	- 0.5	Al 27	-1.5
22U	EX RH OR IN LH	AE 22U +4.	AE 22	J +3.5	AE 22U	+2.5	AE 22U	AE 22U	+0.5	AE 22U	-0.5	AE 22U	-1.5
(1/2U)	EX LH OR IN RH	Al 22U +4.	AI 22	J +3.5	AI 22U	+2.5	AI 22U	AI 22U	+0.5	AI 22U	-0.5	AI 22U	-1.5
27U	EX RH OR IN LH	AE 27U +4.	AE 27	J +3.5	AE 27U	+2.5	AE 27U	AE 27U	+0.5	AE 27U	-0.5	AE 27U	-1.5
(5/8U)	EX LH OR IN RH	Al 27U +4.	AI 27	J +3.5	AI 27U	+2.5	AI 27U	AI 27U	+0.5	AI 27U	-0.5	AI 27U	-1.5


- Опорные пластины для позитивного наклона В используются при точении
- Правая резьба с правой державкой или левая резьба с левой державкой


- Опорные пластины для негативного наклона β используются при точении
- Правая резьба с левой державкой или левая резьба с вой державкой
- (1) H1 неизменная для всех комбинаций

Выбор опорной пластины в зависимости от угла подъёма резьбы λ

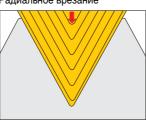



3амена стандартной опорной пластины на негативную позволяет уменьшить износ по задней поверхности

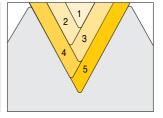
<u>АЕ опорные пластины</u>: EX-RH и IN-LH державки <u>AI опорные пластины</u>: IN-RH и EX-LH державки

▶ Соответствие заднего угла и угла подъёма резьбы

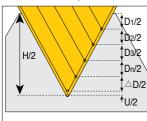
Угол наклона β режущих кромок соответствует специальному углу подъёма резьбы λ и обеспечивает равные задние углы на обеих сторонах пластины.



- а Задний угол
- λ Угол подъёма резьбы
- β Эффективный угол наклона достигается правильным выбором соответствующей опорной пластины

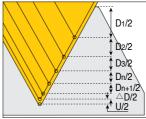

> Способы врезания для операций резьбонарезания

Радиальное врезание



Комбинированное врезание

Боковое врезание


С неизменной глубиной резания за проход

$$\frac{D_1}{2} = \frac{D_2}{2} = \frac{D_3}{2} = \frac{D_n}{2}$$

Боковое врезание

С уменьшающейся глубиной резания за проход

$$\frac{D_1}{2} > \frac{D_2}{2} > \frac{D_3}{2} > \frac{D_n}{2} > \frac{D_{n+1}}{2}$$

Программа для станков с ЧПУ для нарезания внутренней резьбы
 Нарезание правосторонней резьбы - попутное фрезерование снизу

Программа основана на оси инструмента

При использования данного способа программирования не требуется значение компенсации радиуса инструмента, в отличие от компенсации износа.

А = Радиус перемещения инструмента

 $A = \frac{Do-D}{2}$

Do = Больший диаметр резьбы

D = Диаметр резания

■ Общая программа

G90 G00 G54 G43 H1X0 Y0 Z10 S...

G00 Z-(до глубины резания)

G01 G91 G41 D1 X(A/2) Y-(A/2) Z0 F...

G03 X(A/2) Y(A/2) R(A/2) Z(1/8 шага)

G03 X0 Y0 I-(A) J0 Z(шаг)

G03 X-(A/2) Y(A/2) R(A/2) Z(1/8 шага)

G01 G40 X-(A/2) Y-(A/2) Z0

G90 X0 Y0 Z0

■ Внутренняя резьба

Пример: М 48x2.0 IN-RH (Глубина резьбы 25мм) Державка: TMTSR0029 J30 (Диаметр резания 29 мм)

Пластина: TMT30 I2.0 ISO A=(Do-D)/2=(48-29)/2=9.5

A/2=4.75

(компенсация радиуса инструмента=0)

G90 G0 G54 G43 G17 H1X0 Y0 Z10 S1320

G0 7-25

G01 G91 G41 D1X 4.75 Y-4.75 Z0 F41

G03 X4.75 Y4.75 R4.75 Z0.25

G03 X0 Y0 I-9.5 J0 Z2.0

G03 X-4.75 Y4.75 R4.75 Z0.25

G01 G40 X-4.75 Y-4.75 Z0

G90 G0 X0 Y0 Z0

M30

%

Внутренняя резьба

Наружная резьба

Нарезание резьбы может применяться на несимметричных заготовках, используя преимущества винтовой интерполяции на современных обрабатывающих центрах.

▶ Рекомендуемая последовательность нарезания резьбы

■ TMTECS малые диаметры, короткие монолитные резьбофрезы

Начальная точка	Нахождение центра	Врезание по касательной	Нарезание резьбы	Выход по касательной	Конечная точка

Т-ТАР сплавы

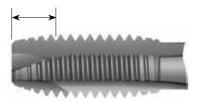
сплавы	Код	Цвет			Описани	е и применение	
Без покрытия	Нет	Металличе	ский		нный выбор дуется для сталей і	не выше 800Н/мм²	и для цветных
Обработка паром	05	Чёрный	*	_	ида железа для пр дуется для мягких,	•	
TiN покрытие	10	Золотой		PVD нитрит-титановое покрытие Bысокая твёрдость, химическая и термостойкость Bысокая стойкость инструмента Универсальное применение для всех типов материалов			
Применение (ISO)		Р		M	K	N	S
Без покрытия		0			0	•	

ТіN покрытие

● : Первый выбор

Обработка паром

о: Второй выбор

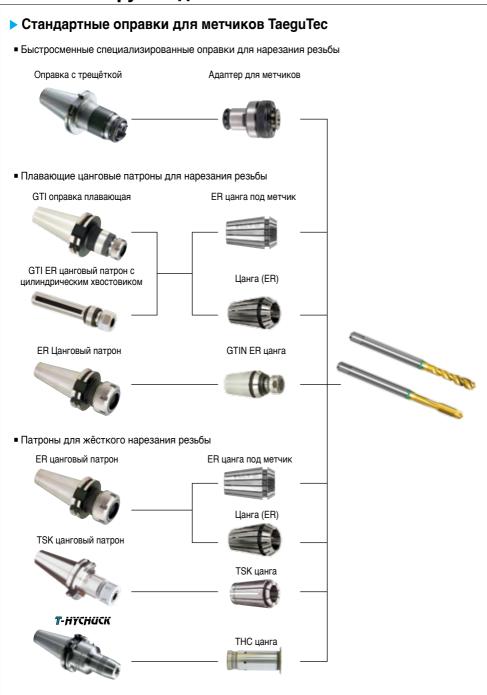

Заборная часть

Заборная часть метчика - это суженная часть резьбы для распределния сил резания на несколько зубьев.

Забрная часть метчика снижает усилия резания, увеличивает стойкость и позволяет обрабатывать резьбу на высоких скоростях резания.

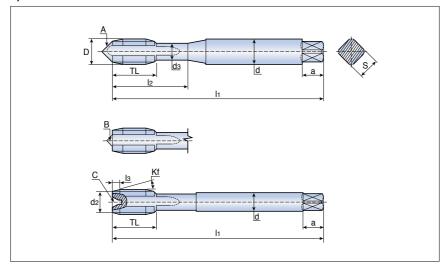
При врезании метчика в отверстие и начале резания каждый зуб заборной части постепенно увеличивает резьбу в заготовке.

Зубья выше первого полного витка резьбы служат направляющими и служат опорой для метчика, обрабатывающего необходимую окончательную глубину резьбы в обрабатываемом отверстии. Длина заборной части подбирается в зависимости от типа отверстия.



- Длинная заборная часть
- Сквозное отверстие
- Глухое отверстие со значительным пространством на дне
- Короткая заборная часть:
- Резьба до самого дна глухого отверстия

0


Форма А	Форма В	Форма С	Форма D	Форма Е	Форма F
5-6 ниток	4-5 ниток	2-Зниток	3.5-5 ниток	1.5-2 ниток	1-1.5 ниток

Основные параметры метчиков

■ Буквенное обозначение

А = Центр на весь диаметр

В = Центр меньшего диаметра

С = Центровое отверстие

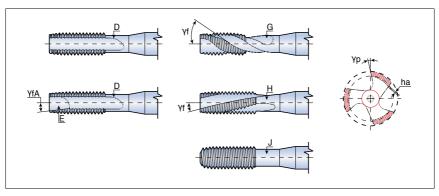
D = Диаметр резьбы

d = Диаметр хвостовика

d2 = Диаметр заборной части

dз = Диаметр шейки

I₁ = Общая длина TL= Длина резьбы


12 = Длина рабочей части

lз = Длина заборной части

S = Размер квадрата

а = Длина квадрата

Kf = Угол уклона заборной части

D = Стружечная канавка

Е = Заборная часть

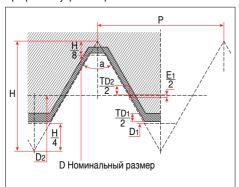
G = Правосторонний метчик

Н = Левосторонний метчик

J = Резьбонакатной инструмент

Yf = Угол подъёма

YfA = Угол подточки


үр = Передний угол

ha = Фасочная затыловка

Допуск на метчик

Согласно DIN EN 22 857

■ Профиль внутренней резьбы

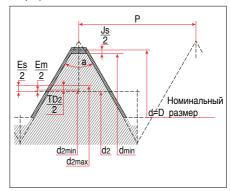
Е1 = Нижний предел, ноль для поля допуска Н, положительный для допуска G

D = Минимальный размер наружного диаметра

D₁ = Внутренний диаметр резьбы

D₂ = Средний диаметр резьбы

Н = Высота профиля резьбы


P = Illar

TD₁ = Допуск внутреннего диаметра резьбы

TD₂ = Допуск среднего диаметра резьбы

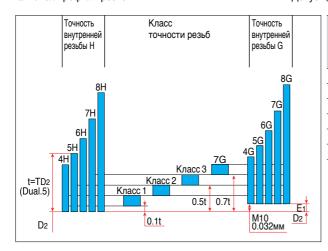
а = Угол профиля резьбы

Профиль метчика

d = D = Номинальный диаметр

dmin = Минимальный размер наружного диаметра

d2 = D2 = Средний диаметр резьбы

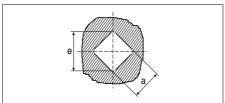

d2max = Максимальный размер среднего диаметра резьбы d2min = Минимальный размер среднего диаметра резьбы

Ет = Нижнее отклонение среднего диаметра резьбы

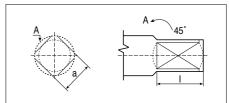
Es = Верхнее отвлонение среднего диаметра резьбы Js = Нижнее отклонение наружного диаметра

Р = Шаг

TD2 = Допуск для среднего диаметра



Стан, допус на ре	CK	Пол	я до	пуск	DВ	
Согл	асно					
DIN	ISO					
4H	ISO1	4H	5H	-	-	-
6H	ISO2	4G	5G	6H	-	-
6G	ISO3	-	-	6G	7H	8H
7G -		-	-	-	7G	8G


Квадраты

DIN 10 - 6.97 Ta6. 1

■ Внутренний квадрат

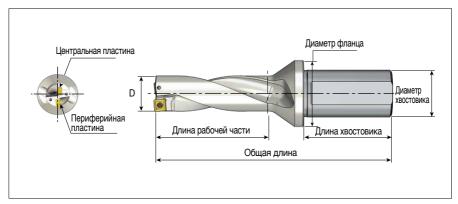
■ Наружный квадрат

Схема 1	Ном.				драт			Цилиндрическая часть		
	Диаметр	Внутре	энний к	вадрат	Нарух	кный кв	адрат		етры	Предпочтительный диамет
	а	ő	a	е		a	- 1	(t	d
		max.	min.	min.	max.	min.	js 16 ⁽¹⁾	OT	до	
Номинальный	2.1	2.260	2.120	2.89	2.100	2.010	5	2.47	2.83	2.5; 2.8
обозначения квадратов	2.4	2.560	2.420	3.27	2.400	2.310	5	2.83	3.20	-
	2.7	2.860	2.720	3.67	2.700	2.610	6	3.20	3.60	3.5
Размер а = 10мм	3.0	3.160	3.020	4.08	3.000	2.910	6	3.60	4.01	4
Квадрат DIN 10-10	3.4	3.610	3.430	4.60	3.400	3.280	6	4.01	4.53	4.5
Daguary	3.8	4.010	3.830	5.15	3.800	3.680	7	4.53	5.08	5
Размеры в миллиметрах	4.3	4.510	4.330	5.86	4.300	4.180	7	5.08	5.79	5.5
	4.9	5.110	4.930	6.61	4.900	4.780	8	5.79	6.53	6
	5.5	5.710	5.530	7.41	5.500	5.380	8	6.53	7.33	7
	6.2	6.460	6.240	8.35	6.200	6.050	9	7.33	8.27	8
	7	7.260	7.040	9.54	7.000	6.850	10	8.27	9.46	9
	8	8.260	8.040	10.77	8.000	7.850	11	9.46	10.67	10
	9	9.260	9.040	12.10	9.000	8.850	12	10.67	12.00	11; 12
	10	10.260	10.040	13.43	10.000	9.850	13	12.00	13.33	-
	11	11.320	11.050	14.77	11.000	10.820	14	13.33	14.67	14
	12	12.320	12.050	16.10	12.000	11.820	15	14.67	16.00	16
	13	13.320	13.050	17.43	13.000	12.820	16	16.00	17.33	-
	14.5	14.820	14.550	19.44	14.500	14.320	17	17.33	19.33	18
	16		16.050		16.000		19	19.33	21.33	20
	18	18.320	18.050	24.11	18.000	17.820	21	21.33	24.00	22
	20	20.395	20.065	26.78	20.000	19.790	23	24.00	26.67	25
	22		22.065		22.000		25	26.67	29.33	28
	24		24.065		24.000		27	29.33	32.00	32
	26		26.065		26.000		29	32.00	34.67	-
	29		29.065		29.000		32	34.67	38.67	36
	32		32.080		32.000		35	38.67	42.67	40
	35		35.080	46.80	35.000		38	42.67	46.67	45
	39		39.080		39.000		42	46.67	52.06	50
	44		44.080		44.000		47	52.06	58.67	56
	49		49.080		49.000		52	58.67	65.33	63
	55		55.100		55.000		58	65.33	73.33	70
	61		61.100		61.000		64	73.33	81.33	80
⁽¹⁾ Не для ручных	68		68.100		68.000		71	81.33	90.66	90
метчиков	76		76.100				79		101.33	100

	ое руководство	"- I ПКЕНО
Проблема	Причина	Решение
	- Очень высокая скорость резания	- Уменьшить скорость резания
	- Недостаточная глубина резания	- Увеличить глубину резания - Изменить способ врезания
	- Высокоабразивный материал	- Использовать пластины с покрытием
	- Недостаточная подача СОЖ	- Использовать СОЖ
	- Неправильная опорная пластина	- Выбрать другую опорную пластину
Преждевременный износ	- Неправильный диаметр точения перед нарезанием резьбы	- Проверить диаметр точения
	- Режущая кромка выше центральной оси детали	- Проверить высоту режущей кромки по отношению к центральной оси детали
	- Очень высокая скорость резания	- Уменьшить скорость резания
	- Очень большая глубина резания	- Уменьшить глубину резания
	- Неправильный выбор сплава резьбонарезной пластины	- Использовать сплав с покрытием - Использовать более прочный сплав
	- Плохой отвод стружки	- Изменить способ врезания
Reikballinballinb	- Недостаточная подача СОЖ	- Использовать СОЖ
Выкрашивание режущей кромки	- Неверная высота режущей кромки по отношению к центральной оси детали	- Проверить высоту режущей кромки по отношению к центральной оси детали
	- Чрезмерно высокая температура в зоне резания	- Уменьшить скорость резания - Уменьшить глубину резания - Проверить диаметр точения
Пластическая деформация	- Неправильный выбор сплава резьбонарезной пластины	Использовать сплав пластины с покрытием Использовать более твёрдый сплав пластины
	- Недостаточная подача СОЖ	- Использовать больше СОЖ
No.	- Низкая температура режущей кромки	- Увеличить скорость резания - Увеличить глубину резания
Hanage us assume a	- Неправильный выбор сплава резьбонарезной пластины	- Использовать сплав с покрытием
Нарост на режущей кромке	- Недостаточная подача СОЖ	- Использовать СОЖ

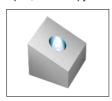
T-THREAD

	ре руководство	- I JIKEND
Проблема	Причина	Решение
	- Низкая температура в зоне резания	- Увеличить скорость резания
	- Очень большая глубина резания	- Уменьшить глубину резания
		- Увеличить число проходов
	- Неправильный выбора сплава	- Использовать более прочный сплав
	резьбонарезной пластины	
	- Неправильный диаметр точения перед нарезанием резьбы	- Проверить диаметр точения
Потолика попишии	- Неправильная высота вершины	- Проверить высоту центров
Поломка вершины после первого	- Недостаточная глубина резания	- Изменить способ врезания
прохода	- Неверный угол наклона передней поверхности опорной пластины	- Установить опорную пластину с другим углом наклона передней поверхности
	- Очень большой вылет резца	- Уменьшить вылет резца
	- Неправильно заданная скорость резания	- Увеличить скорость резания - Уменьшить скорость резания
	- Высокая температура в зоне резания	- Уменьшить глубину резания
	- Плохой отвод стружки	- Изменить способ врезания
	- Недостаточная подача СОЖ	- Использовать СОЖ
Плохое качество	- Неверный угол наклона передней поверхности опорной пластины	- Установить опорную пластину с другим углом наклона передней поверхности
обработки поверхности	- Очень большой вылет резца	- Уменьшить вылет резца
	- Неправильная высота вершины	- Проверить высоту режущей кромки по отношению к центральной оси детали
0.0.2	- Высокая температура в зоне резания	- Уменьшить скорость резания - Изменить глубину резания - Проверить диаметр точения
	- Неправильный выбор сплава резьбонарезной пластины	- Использовать сплав с покрытием - Проверить диаметр точения - Использовать пластины М-типа
Плохой отвод	- Недостаточная подача СОЖ	- Использовать СОЖ
стружки	- Неправильный диаметр точения перед нарезанием резьбы	- Проверить диаметр точения



ICXHMACCKOC	руководство	ı ıçır
Проблема	Причина	Решение
	- Не правильный тип метчика - режущая кромка не подходит под данный материал	- Выберите правильный тип метчика
	- Износ метчика по задней поверхности зубьев	- Улучшите подачу СОЖ - выберите метчик с покрытием
	- Диаметр отверстия под резьбу слишком маленькое	- Выполните правильное отверстия, следуя рекомендациям
Разбивает резьбу	- Выкрашивание кромок	- Для глухого отверстия: метчик со спиральной канавкой - Для сквозного отверстия: метчик с прямой канавкой
	- Несоостность метчика с отверстием под резьбу	- Проверьте крепление метчика или выберите плавающий патрон
	- Точность резьбы несоответсвует допуску	- Выберите метчик с правильным допуском
Turog pool 60	- Точность резьбы несоответсвует допуску	- Выберите метчик с правильным допуском
Тугая резьба	- Неправильный тип метчика	- Выберите правильный тип метчика
	- Усилие в патроне сильно большое или маленькое	- Выберите правильный тип метчика
Нарезание резьбы в продольном направлении	- Неправильное усилие	- Используете патрон с компенсацией - Работайте с патроном с трещеткой - Выберите правильный тип инструмента
Резьба с неправильным шагом	- Неправильный шаг на инструменте	- Выберите правильный метчик - Проверьте затяжку метчика в патроне
Резьба с увеличенной протяженностью	- Неправильное усилие	- Используйте патрон с компенсацией - Работайте с патроном с трещеткой - Выберите правильный тип инструмента
Плохое качество резьбы	- Неправильный тип метчика	- Выберите рекомендованный тип инструмента

Гехническое	руководство	T-TAI
Проблема	Причина	Решение
	- Заклинивание стружки	- См. проблему "сильно большое отверсти
Плохое качество резьбы	- Отверстие под резьбу слишком маленькое	- Выполните правильное отверстия, следуя рекомендациям
типолое качество резвові	- Износ метчика по задней поверхности зубьев	- Используете метчик с покрытием - Улучшите подачу СОЖ
	- Низкая скорость резания	- Увеличьте скорость резания
	- Скорость резания высокая или очень низкая	- Выберите правильную скорость резания по рекомендациям каталога
Низкая стойкость	- Недостаточная подача СОЖ	- Увеличьте подачу СОЖ
	- Низкая стойкость из-за отсутствия покрытия или неправильное покрытие	- Следуйте рекомендациям каталога по выбору покрытия


▶ Оптимальная форма стружки

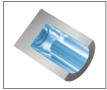
Оптимальная форма стружки от периферийной пластины	Оптимальная форма стружки от центральной пластины
Слишком длинная	Слишком короткая

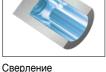
▶ Применение

■ Вращение инструмента

Сверление на наклонной поверхности

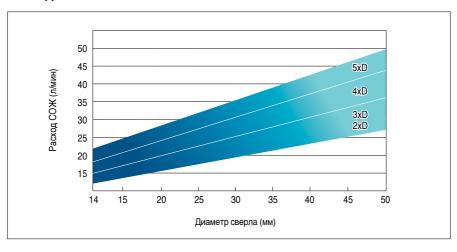
Рассверливание




Сверление сферической поверхности

Прерывистое сверление

Вращение заготовки


Обработка фаски

Растачивание

• Для данных операций рекомендуется снизить подачу на 30-50%

▶ Расход СОЖ

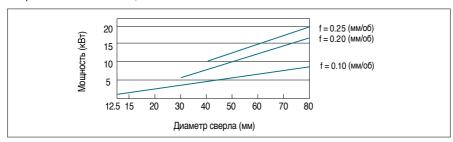
ческое руководство

▶ Максимальная радиальная регулировка (вращение детали)

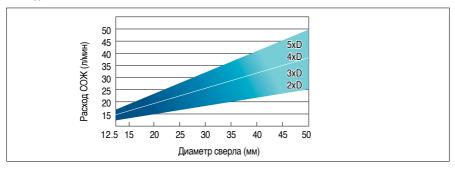
Диаметр сверла	Пластина	Радиальное смещение	Максимальный диаметр отверстия (Ø)
14		0.5	15.0
15	SOMT 050204 DP	0.4	15.8
16		0.3	16.6
17		0.5	18.0
18	SOMT 060204 DP	0.4	18.8
19		0.3	19.6
20		0.5	21.0
21	SOMT 070306 DP	0.4	21.8
22		0.3	22.6
23		0.5	24.0
24	COMT COTOCC DD	0.5	25.0
25	SOMT 08T306 DP	0.4	25.8
26		0.3	26.6
27		0.5	28.0
28		0.5	29.0
29	SOMT 09T308 DP	0.5	30.0
30		0.5	31.0
31		0.3	31.6
32		0.5	33.0
33	SOMT 11T308 DP	0.5	34.0
34		0.5	35.0
35		0.5	36.0
36		0.4	36.8
37		0.5	38.0
38		0.5	39.0
39		0.5	40.0
40	SOMT 130408 DP	0.5	41.0
41		0.5	42.0
42		0.5	43.0
43		0.5	44.0
44		0.5	45.0
45		0.5	46.0
46		0.5	47.0
47	SOMT 150510 DP	0.5	48.0
48		0.5	49.0
-			
49		0.5	50.0

Р Допуск отверстия (при стабильных условиях обработки)

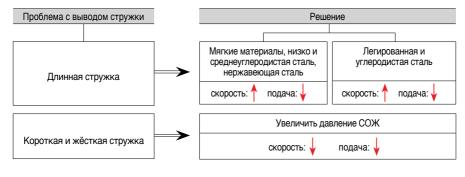
Глубина сверления	Допуск отверстия (мм)
2xD	0/+0.15
3xD	0/+0.20


1 луоина сверления	Допуск отверстия (мм)
4xD	0/+0.25
5xD	0/+0.30

▶ Подвод СОЖ для свёрл серии T-DRILL

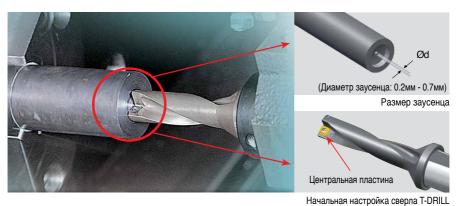

- Важно обеспечить рекомендованное давление СОЖ
- Низкое давление может вызвать вибрацию и снижение стойкости инструмента
- Рекомендуемое минимальное давление для свёрл серии T-DRILL длиной 2xD и 3xD 4кг/см² и 5кг/см² для свёрл T-DRILL длиной 4xD

Потребление полезной мощности и СОЖ

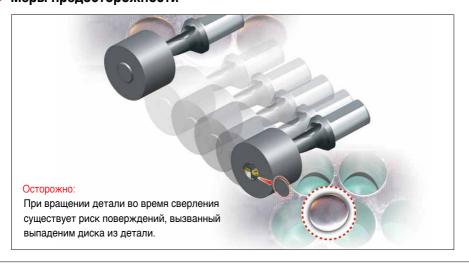

■ Потребление полезной мощности

■ Расход СОЖ

Решение проблем


Настройка

Первое отверстие - после сверления на глубину 3 - 6 мм отведите сверло и проверьте наличие заусенца размером 0.2 - 0.7 мм


- Если заусенец отсутствует: Это может стать причиной поломки пластины и вызвать вибрацию при сверлении
 - Проверните корпус сверла в резцедержателе на 180 градусов и попробуйте снова

Если размер заусенца больше рекомендованного:

- Настройте соосность детали и инструмента для получения заусенца необходимого размера
- В противном случае может возникнуть перегрузка и вибрация во время сверления

Меры предосторожности

▶ Допуск и максимальный размер отверстия с радиальной настройкой

Диаметр сверла	Пластина	Радиальное смещение	Максимальный диаметр отверстия (Ø)
13		+0.5	14.0
14	SPMG 050204	+0.5	15.0
15		+0.5	16.0
16		+0.5	17.0
17		+0.5	18.0
18	CDMC 060004	+0.5	19.0
19	SPMG 060204	+0.5	20.0
20		+0.5	21.0
21		+0.25	21.5
22		+0.5	23.0
23		+0.5	24.0
24	ODMO 07T000	+0.5	25.0
25	SPMG 07T308	+0.5	26.0
26		+0.25	26.5
27		+0.25	27.5
28		+0.5	29.0
29		+0.5	30.0
30 31	00140 000400	+0.5	31.0
	SPMG 090408	+0.25	31.5
32		+0.25	32.5
33		+0.25	33.5
34		+0.5	35.0
35		+0.5	36.0
36		+0.5	37.0
37	00040 440400	+0.5	38.0
38	SPMG 110408	+0.5	39.0
39		+0.5	40.0
40		+0.25	40.5
41		+0.25	41.5
42		+0.5	43.0
43		+0.5	44.0
44		+0.5	45.0
45		+0.5	46.0
46	SPMG 140512	+0.5	47.0
47	1	+0.5	48.0
48	7	+0.25	48.5
49	7	+0.25	49.5
50		+0.25	50.5

[•] Выбирайте сверло минимальной длины для достижения максимальной производительности

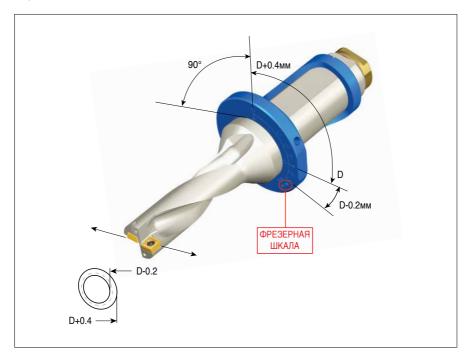
▶ Допуск отверстия (при стабильных условиях обработки)

Глубина сверления	Допуск отверстия (мм)	Глубина сверления	Допуск отверстия (мм)
2xD	0/+0.20	4xD	0/+0.30
3xD	0/+0.25	5xD	0/+0.35

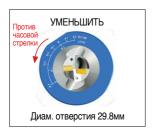
Информация об установочных пластинах

Толщина	Изменение	Для				
(мм)	диаметра	Для TDR 07CA	Для TDR 09CA	Для TDR 11CA	Для TDR 12CA	
0.5	1.0	TDP-0701	TDP-0901	TDP-1101	TDP-1101	
1.0	2.0	TDP-0702	TDP-0902	TDP-1102	TDP-1102	
1.5	3.0	-	TDP-0903	TDP-1103	TDP-1103	
2.0	4.0	-	TDP-0904	TDP-1104	TDP-1104	
2.5	5.0	-	TDP-0905	TDP-1105	TDP-1105	
3.0	6.0	-	-	TDP-1106	TDP-1106	

 Для стабильного сверления TaeguTec предлагает периферийные картриджи фиксированного размера без установочных пластин.
 По запросу поставляются свёрла с монолитным корпусом без картриджей.



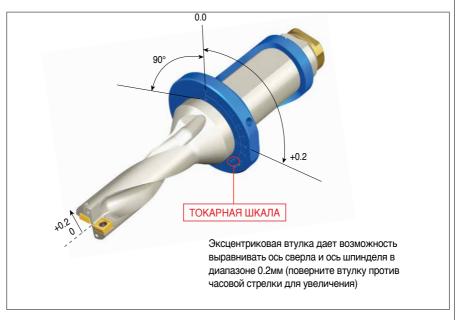
 Для нестабильных условий обработки TaeguTec рекомендует использовать специальные периферийные картриджи для сверления максимального диаметра


Обозначение	Пластина		Пиотором видиотрор	
Ооозначение	Внутренняя	Наружная	Диапазон диаметров	
TDR 09CA-P1-T62	SPMG 09	SPMG 11	57 - 62	
TDR 09CA-P2-T66	SPMG 09	SPMG 11	63 - 66	
TDR 11CA-P1-T73	SPMG 11	SPMG 12	67 - 73	
TDR 12CA-P2-T80	SPMG 12	SPMG 14	74 - 80	

Применение на фрезерном оборудовании

■ На фрезерном станке втулка может изменить номинальный диаметр сверла сместив ось сверла относительно шпинделя

Диаметр сверла: 30мм



- Для увеличения диаметра поверните втулку по часовой стрелке, для уменьшения диаметра - против часовой стрелки.

Применение на токарном оборудовании

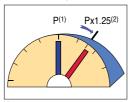
 На токарном станке эксцентриковая втулка может выравнивать ось сверла до совпадения с осью шпинделя.

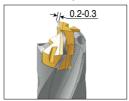
Параметры сверла

▶ Особенности обработки в зависимости от параметров сверла

Угол наклона винтовой линии	Упрочненные материалы (Инконель, титан и т.д.) Малый Угол наклона винтовой линии Большо й (Алюминий, медь и т.д.)
Длина режущей части	Определяется глубиной резания. Однако, для лучшей стойкости длина должна быть минимально возможной
	Стандарт 140°
Угол заточки	Для мягких и легкообрабатываемых Малый Угол заточки → Большой Упрочненные материалы материалов
	Ленточка выполняет роль направляющей в процессе сверления
Ленточка	Плохая прямолинейность

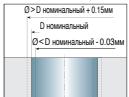
▶ Настройка головок DRILLRUSH

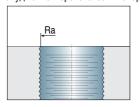




Признаки износа головки

■ Увеличение потребляемой мощности

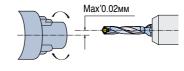

(1) Новая головка (2) Изношенная головка ■ Максимально допустимый износ


Ø > D номинальный + 0.15мм

■ Изменение диаметра

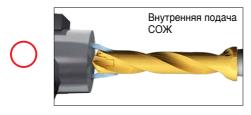
Значительное увеличение вибрации и шума

■ Ухудшение шероховатости поверхности



Максимальное биение

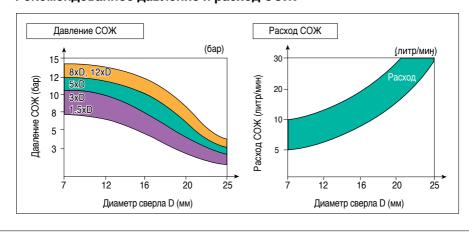
■ Биение на фрезерном станке



■ Биение на токарном станке

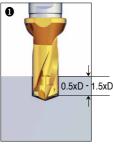
Рекомендации по подаче СОЖ (токарный станок)

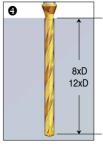



▶ Рекомендации по подаче СОЖ (обрабатывающий центр)

Рекомендованное давление и расход СОЖ

▶ Ограничения по применению DRILLRUSH


0


▶ Рекомендации при использовании сверл с большим вылетом 8xD, 12xD

- Обработка пилотного отверстия глубиной 0.5xD - 1.5xD
- Засверливание в пилотное отверстие на пониженной скорости и подаче
- Подавать СОЖ в течение 2-3 секунд
- Продолжайте сверление на рекомендованных режимах
- После обработки извлекайте сверло из отверстия на низкой скокрости и подачи

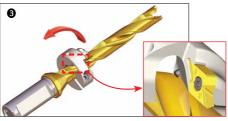
Заглушки для токарных станков

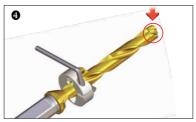
TaeguTec поставляет специальные втулки с внутренней резьбой для подачи СОЖ на токарных станках, которые устанавливаются на хвостовик сверла

Артикул	Маркировка	Диаметр хвостовика	Внутренняя резьба
6102019	PL-TCD-12	12	G 1/16
6102020	PL-TCD-16	16	G 1/16
6102021	PL-TCD-20	20	G 1/8
6102022	PL-TCD-25	25	G 1/8
6102023	PL-TCD-32	32	G 1/8

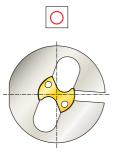
Сквозное отверстие

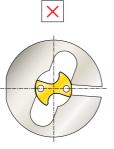
Сверление и расточка

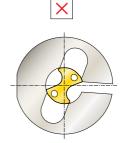

Сквозное отверстие


Установить насадку на корпус сверла. Стопор должен быть внутри канавки сверла

Затянуть насадку и закрепить сверлильную головку

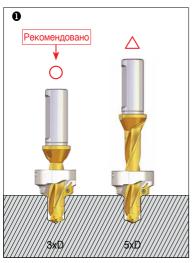


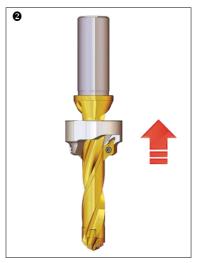

Поворачивать насадку против часовой стрелки до тех пор пока стопор не коснется канавки



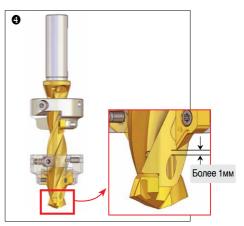
Затянуть насадку и закрепить сверлильную головку

 Если насадка для обработки фаски установлена правильно, канавки сверла будут совпадать с канавками насадки.

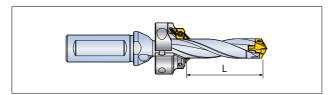




Рекомендации для стабильной обработки

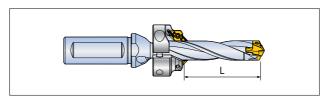

По возможности всегда используйте сверло с минимальным вылетом. При использовании сврела с большим вылетом снизьте скорость резания для уменьшения вибрации.

При обработке сквозных отверстий закрепляйте насадку для снятия фаски как можно ближе к хвостовику сверла.


Для улучшения стойкости пластины применяйте наружную и внутреннюю подачу СОЖ.

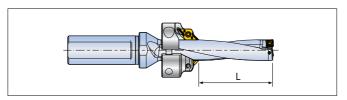
При закреплении насадки для обработки фаски убедитесь, что она не препятствует подаче СОЖ.

▶ Насадки для обработки фаски - DRILLRUSH



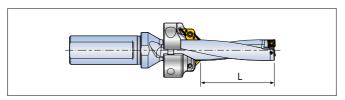
	Сверло		Насадка CFR	L	
		Сверло	пасадка огн	min	max
	TCD	130-134-16T3/S0-3D	CFR D130-A45	19	19
		135-139-16T3/S0-3D	CFR D135-A45	19	20
		140-144-16T3/S0-3D	CFR D140-A45	21	22
		145-149-16T3/S0-3D	CFR D145-A45	22	23
		150-159-20T3/S0-3D	CFR D150-A45	23	23
		160-169-20T3/S0-3D	CFR D160-A45	24	25
		170-179-20T3/S0-3D	CFR D170-A45	26	28
3D		180-189-25T2/S0-3D	CFR D180-A45	27	30
		190-199-25T2/S0-3D	CFR D190-A45	29	33
		200-209-25T2/S0-3D	CFR D200-A45	30	36
		210-219-25T2/S0-3D	CFR D210-A45	32	39
		220-229-25T2/S0-3D	CFR D220-A45	33	42
		230-239-32T2/S0-3D	CFR D230-A45	35	45
		240-249-32T2/S0-3D	CFR D240-A45	36	48
		250-259-32T2/S0-3D	CFR D250-A45	38	51
	TCD	100-104-16T3/S0-5D	CFR D100-A45	28	28
		105-109-16T3/S0-5D	CFR D105-A45	29	30
		110-114-16T3/S0-5D	CFR D110-A45	31	33
		115-119-16T3/S0-5D	CFR D115-A45	32	35
		120-124-16T3/S0-5D	CFR D120-A45	33	45
		125-129-16T3/S0-5D	CFR D125-A45	34	40
		130-134-16T3/S0-5D	CFR D130-A45	36	43
		135-139-16T3/S0-5D	CFR D135-A45	37	43
		140-144-16T3/S0-5D	CFR D140-A45	38	48
		145-149-16T3/S0-5D	CFR D145-A45	39	48
5D		150-159-20T3/S0-5D	CFR D150-A45	41	53
		160-169-20T3/S0-5D	CFR D160-A45	43	58
		170-179-20T3/S0-5D	CFR D170-A45	46	63
		180-189-25T2/S0-5D	CFR D180-A45	48	68
		190-199-25T2/S0-5D	CFR D190-A45	51	73
		200-209-25T2/S0-5D	CFR D200-A45	53	78
		210-219-25T2/S0-5D	CFR D210-A45	56	79
		220-229-25T2/S0-5D	CFR D220-A45	58	84
		230-239-32T2/S0-5D	CFR D230-A45	61	89
		240-249-32T2/S0-5D	CFR D240-A45	63	94
		250-259-32T2/S0-5D	CFR D250-A45	66	99

▶ Насадки для обработки фасок - DRILLRUSH



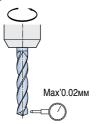
	Сверло	Насадка CFR	I	L
	Оверло	Пасадка ОПП	min	max
	TCD 100-104-16T3/S0-8D	CFR D100-A45	45	58
	105-109-16T3/S0-8D	CFR D105-A45	49	62
	110-114-16T3/S0-8D	CFR D110-A45	49	66
	115-119-16T3/S0-8D	CFR D115-A45	53	70
	120-124-16T3/S0-8D	CFR D120-A45	53	74
	125-129-16T3/S0-8D	CFR D125-A45	57	78
	130-134-16T3/S0-8D	CFR D130-A45	57	82
	135-139-16T3/S0-8D	CFR D135-A45	61	84
	140-144-16T3/S0-8D	CFR D140-A45	61	88
	145-149-16T3/S0-8D	CFR D145-A45	65	92
8D	150-159-20T3/S0-8D	CFR D150-A45	65	96
	160-169-20T3/S0-8D	CFR D160-A45	69	103
	170-179-20T3/S0-8D	CFR D170-A45	73	111
	180-189-25T2/S0-8D	CFR D180-A45	77	118
	190-199-25T2/S0-8D	CFR D190-A45	81	126
	200-209-25T2/S0-8D	CFR D200-A45	85	134
	210-219-25T2/S0-8D	CFR D210-A45	89	142
	220-229-25T2/S0-8D	CFR D220-A45	93	150
	230-239-32T2/S0-8D	CFR D230-A45	97	158
	240-249-32T2/S0-8D	CFR D240-A45	101	166
	250-259-32T2/S0-8D	CFR D250-A45	105	174
	TCD 120-124-16S0-12D	CFR D120-A45	87	121
	125-129-16S0-12D	CFR D125-A45	90	127
	130-134-16S0-12D	CFR D130-A45	93	133
	135-139-16S0-12D	CFR D135-A45	96	137
	140-144-16S0-12D	CFR D140-A45	99	143
	145-149-16S0-12D	CFR D145-A45	102	149
12D	150-159-20S0-12D	CFR D150-A45	105	155
120	160-169-20S0-12D	CFR D160-A45	111	166
	170-179-20S0-12D	CFR D170-A45	117	178
	180-189-25S0-12D	CFR D180-A45	123	189
	190-199-25S0-12D	CFR D190-A45	129	201
	200-209-25S0-12D	CFR D200-A45	135	213
	210-219-25S0-12D	CFR D210-A45	141	225
	220-229-25S0-12D	CFR D220-A45	147	237

▶ Насадки для обработки фасок - TOPDRILL и T-DRILL

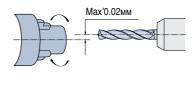


	TOPDRILL	T-DRILL	Hoodaya CED	L		
	TOPDHILL	I-DHILL	Насадка CFR	min	max	
	TOP	TDR 3125-20T2-05	CFR D125-A45	16	16	
		3130-20T2-05	CFR D130-A45	16	16	
		3135-20T2-05	CFR D135-A45	17	18	
	3140-20T2-05	3140-20T2-05	CFR D140-A45	17	18	
	3145-20T2-05	3145-20T2-05	CFR D145-A45	18	19	
	3150-20T2-05	3150-20T2-05	CFR D150-A45	18	19	
	3155-20T2-05	3155-25T2-06	CFR D160-A45	19	21	
	3160-20T2-05	3160-25T2-06	CFR D160-A45	19	21	
	3165-25T2-06	3165-25T2-06	CFR D170-A45	21	24	
	3170-25T2-06	3170-25T2-06	CFR D170-A45	22	24	
	3175-25T2-06	3175-25T2-06	CFR D180-A45	23	27	
	3180-25T2-06	3180-25T2-06	CFR D180-A45	23	26	
3D	3185-25T2-06	3185-25T2-06	CFR D180-A45	24	29	
טט	3190-25T2-06	3190-25T2-06	CFR D190-A45	25	29	
	3195-25T2-07	3195-25T2-06	CFR D190-A45	25	32	
	3200-25T2-07	3200-25T2-06	CFR D200-A45	26	32	
	3205-25T2-07	3205-25T2-06	CFR D200-A45	27	35	
	3210-25T2-07	3210-25T2-06	CFR D210-A45	27	35	
	3215-25T2-07	3215-25T2-07	CFR D210-A45	28	38	
	3220-25T2-07	3220-25T2-07	CFR D220-A45	29	38	
	3225-25T2-08	3225-25T2-07	CFR D220-A45	29	41	
	3230-25T2-08	3230-25T2-07	CFR D230-A45	30	41	
	3235-25T2-08	3235-25T2-07	CFR D230-A45	31	44	
	3240-25T2-08	3240-25T2-07	CFR D240-A45	31	44	
	3245-25T2-08	3245-25T2-07	CFR D240-A45	32	47	
	3250-25T2-08	3250-25T2-07	CFR D250-A45	33	47	
					l	

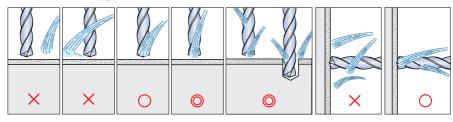
▶ Насадки для обработки фасок - TOPDRILL и T-DRILL



	TOPDRILL	T-DRILL	Насадка CFR		L
		1 DITIEE		min	max
	TOP	TDR 4125-20T2-05	CFR D125-A45	25	26
	<u> </u>	4130-20T2-05	CFR D130-A45	25	26
	-	4135-20T2-05	CFR D135-A45	27	30
	4140-20T2-05	4140-20T2-05	CFR D140-A45	28	30
	4145-20T2-05	4145-20T2-05	CFR D145-A45	29	34
	4150-20T2-05	4150-20T2-05	CFR D150-A45	30	34
	4155-20T2-05	4155-25T2-06	CFR D160-A45	31	37
	4160-20T2-05	4160-25T2-06	CFR D160-A45	32	37
	4165-25T2-06	4165-25T2-06	CFR D170-A45	33	41
	4170-25T2-06	4170-25T2-06	CFR D170-A45	34	41
	4175-25T2-06	4175-25T2-06	CFR D180-A45	35	45
	4180-25T2-06	4180-25T2-06	CFR D180-A45	36	44
4D	4185-25T2-06	4185-25T2-06	CFR D180-A45	37	48
40	4190-25T2-06	4190-25T2-06	CFR D190-A45	38	48
	4195-25T2-07	4195-25T2-06	CFR D190-A45	39	52
	4200-25T2-07	4200-25T2-06	CFR D200-A45	40	52
	4205-25T2-07	4205-25T2-06	CFR D200-A45	41	56
	4210-25T2-07	4210-25T2-06	CFR D210-A45	42	56
	4215-25T2-07	4215-25T2-07	CFR D210-A45	43	60
	4220-25T2-07	4220-25T2-07	CFR D220-A45	44	60
	4225-25T2-08	4225-25T2-07	CFR D220-A45	45	64
	4230-25T2-08	4230-25T2-07	CFR D230-A45	46	64
	4235-25T2-08	4235-25T2-07	CFR D230-A45	47	68
	4240-25T2-08	4240-25T2-07	CFR D240-A45	48	68
	4245-25T2-08	4245-25T2-07	CFR D240-A45	49	72
	4250-25T2-08	4250-25T2-07	CFR D250-A45	50	72
	<u> </u>				
	-				



► Максимальное биение сверл H-DRILL


■ На фрезерном станке

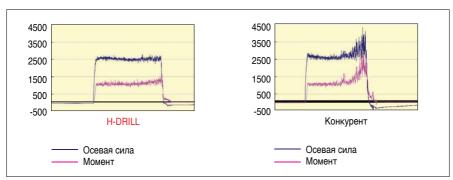
На токарном станке

■ Рекомендации по наружной подаче СОЖ

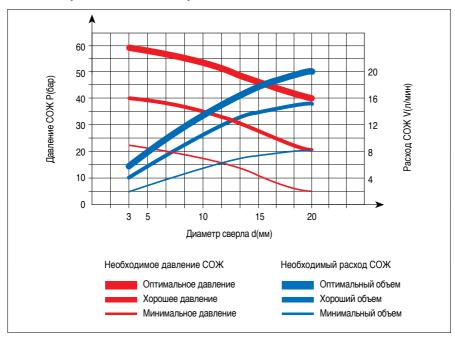
Х: Плохо ○: Хорошо ○: Отлично

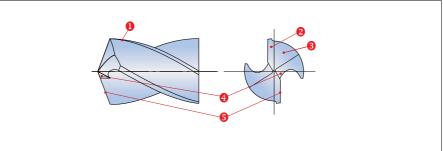
▶ Обработка в нестабильных условиях

■ ТедиТес рекомендует снизить подачу на 30-40% :



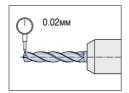
Твердосплавные монолитные сверла НЕ предназначены для увеличения уже просверленных отверстий


▶ Стабильная обработка с низкими усилиями резания

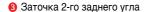

- Диаметр сверла : Ø12.0мм - Материал : SAE 4140 - Скорость резания : 100(м/мин) - Подача : 0.25(мм/об) - Глубина отверстия : 60(мм)

- Внутренний подвод СОЖ, сквозное отверстие

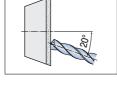
Рекомендуемое давление и расход СОЖ

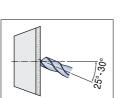


Инструкции по переточке


Зажим

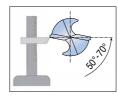
 Закрепите сверло в цанговом патроне - биение не должно превышать 0.02мм

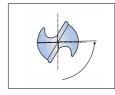


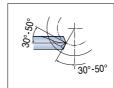

2 Заточка 1-го заднего угла

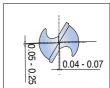
- Настроить сверло для заточки угла при вершине (140°) и 1-го заднего угла (10°-17°)
- Режущая кромка должна находиться в горизонтальной плоскости
- Шлифовать 1-й задний угол на глубину 0.02
- 0.03мм, 2-3 выхаживающих прохода, чтобы высота скоса была в пределах 0.02мм

- Настроить сверло для заточки 2-го заднего угла (25°-30°)
- Шлифовать поверхности 2-го заднего угла на обеих режущих кромках друг за дргуом так, чтобы пересечение 1-й и 2-й поверхностей было параллельно режущей кромке.

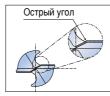


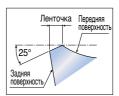





4 Заострение

- Закрепить головку сверла горизонтально
- С помощью калибра установить 2 угла при вершине режущих кромок горизонтально
- Повернуть сверло на 50°-70°, чтобы поперечная режущая кромка стала вертикально
- Установить шлифовальный круг для заострения под углом 30°-50° по отношению к оси сверла
- Заострение должно быть удалено от центра сверла на 0.04-0.07мм





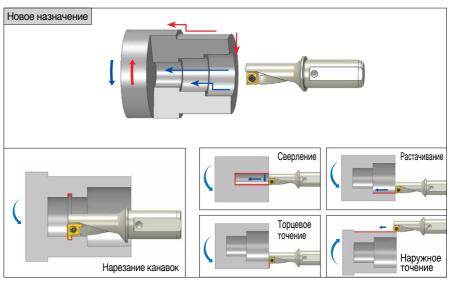
б Хонингование

 После образования ленточки, как показано на рисунке, выполнить алмазную доводку

- Ширина ленточки
- SHO, SHD : 0.03 0.08мм
- ВНD: 0.06 0.08мм
- Шероховатость ленточки может влиять на стойкость инструмента
- Используйте мелкозернистый шлифовальный круг (#1500)
- Ширина ленточки должна быть одинаковой

Контрольные точки	Рекомендации
 - Высота кромки не более 0.02мм? - Отсутствие дефектов на режущей кромке? - Ленточка одинаковой ширины и с хорошей шероховатостью поверхности? 	- Рекомендуется шлифование с СОЖ - Алмазный круг: зернистость 250-400 - Алмазный надфиль: зернистость 140 - Алмазный доводочный круг: зернистость 800 - 1500

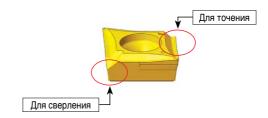

25



Многофункциональная система

- Сверление, растачивание и точение одним инструментом
- Быстрая настройка и короткое время цикла
- Минимальное количество инструментов и низкие затраты на инструмент

Применение



ТЕХНИЧЕСКОЕ РУКОВОДСТВО

Техническая информация

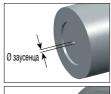
- Позиционирование пластины
- Режущая кромка для сверления должна располагаться в центре корпуса сверла

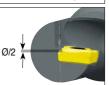
- Давление СОЖ
- Давление должно быть не менее 2 бар для сверл вылетом 3xD независимо от диметра сверления (оптимальное давление более 5 бар)
- Оптимизация формы стружки
- Материалы с низким содержанием углерода (низкоуглеродистая сталь / низкоуглеродистая легированная сталь)

Высокоскоростная обработка рекомендуется для более тонкой стружки, которая позволяет избежать многих проблем, вызванных толстой стружкой

- Материалы со средним и высоким содержанием углерода (углеродистая сталь / легированная сталь)

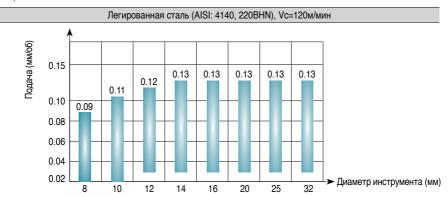
Слишком тонкая стружка → Увеличить скорость резания если она низкая или снизить подачу Слишком толстая стружка → Снизить скорость резания если она высокая или повысить подачу

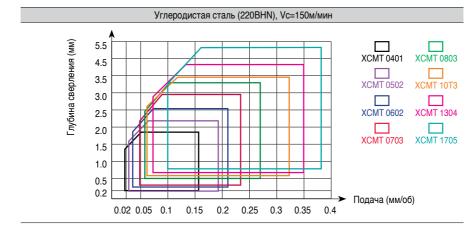

- Настройка
- Проверьте наличие и размер заусенца после сверления на глубину
 3 6мм. Размер заусенца должен быть 0.15-0.45мм.


Отрегулируйте ось Y корпуса сверла, используя зажимной элемент или поверните корпус инструмерта на 180° и зафиксируйте его в револьверной головке и снова проверьте размер заусенца.

Может стать причиной поломки пластины и вибрации при сверлении и точении

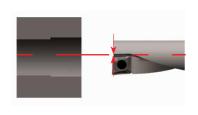
 Размер заусенца превышает рекомендованный Может вызвать повышенную нагрузку и вибрацию





▶ Контроль стружкодробления

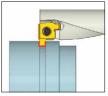
■ Сверление



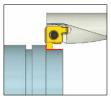
■ Точение

Радиальная регулировка (внецентренное сверление)

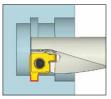
Радиальная регулировка зависит от диаметра сверла

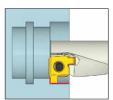


Державка	Диаметр сверла	Dmin	Dmax
TCAP 08 -	8	7.86	8.35
TCAP 10 -	10	9.82	10.60
TCAP 12 -	12	11.82	12.60
TCAP 14 -	14	13.80	14.60
TCAP 16 -	16	15.76	16.50
TCAP 20 -	20	19.80	20.60
TCAP 25 -	25	24.80	25.80
TCAP 32 -	32	31.80	33.00

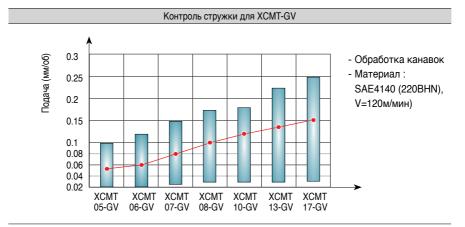


Р Применение

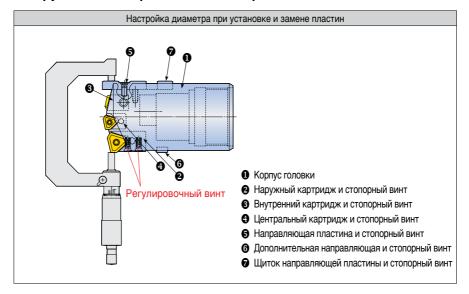

Уникальная возможность заменить монолитное сверло, расточную и проходную токарные державки на один инструмент ТОРСАР, который был разработан для многофункциональной обработки: от сверления до токарных операций. Инструмент ТОРСАР также может выполнять операции по обработке различных типов канавок с помощью специально разработанных пластин и державок.



Наружное точение



Обработка внутренних канавок



Растачивание

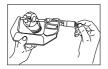
Рекомендованные режимы резания

▶ Инструкция по настройке головок серий ТВТА 3.../5.../7.../9...

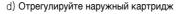
- ШАГ 1: Вставить направляющую пластину 6 как показано на схеме
 - установить стопорный винт 6 как показано и затянуть
- ШАГ 2: Ослабить регулировочный и стопорный винты наружного картриджа 2
- ШАГ 3: Протолкнуть наружный картридж к центру головки
- ШАГ 4: Немного затянуть стопорный винт **②** и отрегулировать диаметр двумя регулировочными винтами
- ШАГ 5: После завершения регулировки крепко затянуть стопорный винт 2

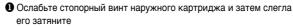
Замена пластин:

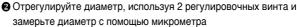
- Тщательно очистить посадочные карманы и удалить из них мельчайшие посторонние частины.
 Прочно закрепить пластину в картридже и проверить надежность ее посадки.
- Замена направляющей пластины:
- Карманы для направляющих пластин выполнены с высокой точностью и с обратной конусностью, поэтому при износе кромки направляющие пластины можно перевернуть и использовать повторно.
 Направляющие пластины шлифованные в размер.
- Примечание:
- Несмотря на то, что стопорные винты обработаны антифрикционной смазкой необходимо регулярно повторно наносить смазку во избежание блокировки.


Однако, в реальных условиях работы пластины имеют допуск на размер и поэтому каждый раз при смене пластины необходимо регулировать диаметр головки следующим методом.

а) Извлеките внутренний картридж во избежание затирания винта




- b) Для измерения диаметра необходимо выдвинуть направляющую пластину
 - Ослабить стопорный винт и подвинуть направляющую
 - 2 Затянуть стопорный винт в положении измерения

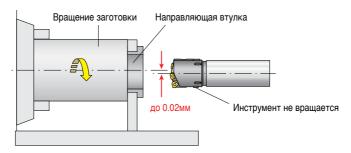


с) Замерить диаметр с помощью микрометра Рекомендуется настроить диаметр инструмента с допуском h8 к диаметру отверстия

Если диаметр не соответствует рекомендованному размеру выполните шаг d) ниже. Если диаметр соответствует рекомендованному размеру выполните шаг е) ниже.

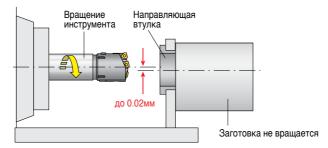
- Образования в предоставления в предо
- Еще раз проверьте диаметр с помощью микрометра. Если он все еще вне допуска повторите процедуру с шага 1.

Примечание: Изменение радиуса пластины может привести к повреждению головки или заготовки, поэтому необходимо отрегулировать размер.



- е) Установить направляющую пластину в исходное положение и затянуть стопроный винт
- f) Установить внутренний картридж и затянуть стопорный винт

Примечание: Убедитесь, что все стопорные винты туго затянуты, так как они могут ослабиться если во время сверления будет вибрация.

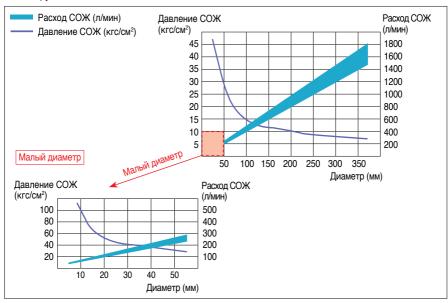

Вращение заготовки

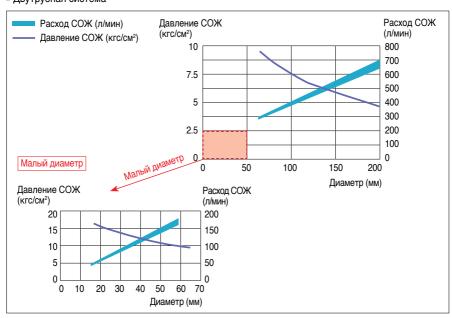
- Применяется только при полной соосности заготовки и инструмента
- Хорошие результаты по прямолинейности отверстия и износостойкости направляющей втулки по сравнению с системой вращения инструмента.
- Отклонение от соосности между направляющей втулкой и шпинделем не должно превышать 0.02мм.

Вращение инструмента

- Может применяться когда нет соосности заготовки и инструмента.
- Отклонение от соосности между направляющей втулкой и шпинделем не должно превышать 0.02мм.

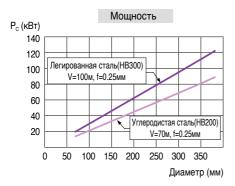
Состояние СОЖ

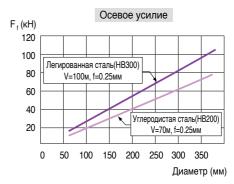

- Температура СОЖ
- Подходящая температура СОЖ от 30 до 40°С (90 100°F).
- Повышение температуры вызывает ухудшение свойств СОЖ, что приводет к плохой стойоксти инструмента и шероховатости обрабатываемой поверхности.
- Фильтрация СОЖ
- СОЖ должна быть отфильтрована для обеспечения защиты направляющих пластин и хорошей шероховатости поверхности.
- Применение водоэмульсионной СОЖ
- Рекомендованная концентрация водоэмульсионной СОЖ 10% (степень разбавления 1/10)
 для лучшей защиты направляющих пластин.

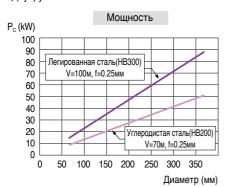

Техническое руководство

Рекомендованный расход и давление СОЖ

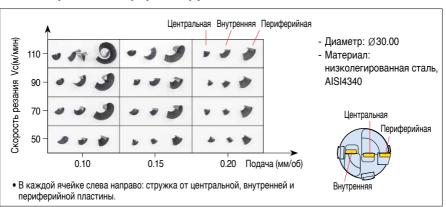
■ Однотрубная система




■ Двутрубная система


▶ Рекомендованная мощность (кВт) и осевое усилие

■ Однотрубная система

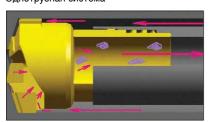


■ Двутрубная система

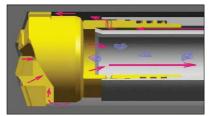
Режимы резания и форма стружки

ТЕХНИЧЕСКОЕ РУКОВОДСТВО

► Сплавы для применения по ISO


	Сплови	Диапазон применения по ISO						
	Сплавы	10	15	20	25	30	35	40
P	TB20X							
P	TB25X							
84	TB25X							
M	TB33X							
K	TB27X							
N	TB27X							
S	TB27X							

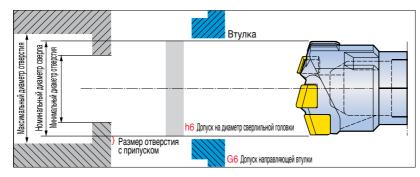
• В конце маркировки сплава укажите номер необходимого покрытия


TB__3 : Покрытие TiAIN
TB__4 : Покрытие TiCrAIN

▶ Системы глубокого сверления

■ Однотрубная система

■ Двутрубная система



Рекомендации по подбору диаметра сверла

Применение: Тип BTA и BTS Диаметр сверла: 12.6 - 65.0мм

Допуск отверстия: ІТ9

Шероховатость поверхности: Ra $2\mu m$ COЖ: Чистое или эмульсионное масло

Номинальный диаметр сверла =

Мин. диаметр отверстия + 2/3 X (Макс. диаметр отверстия - Мин. диаметр отверстия)

Макс. диаметр отверстия - Диаметр инструмента>0.05мм

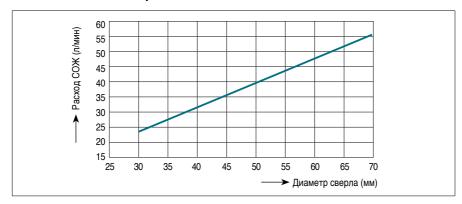
Шлифованный до необходимого диаметра с допуском h6 по ISO.

• Обычно диаметр сверла равен минимальному размеру плюс (+) две трети (2/3) допуска.

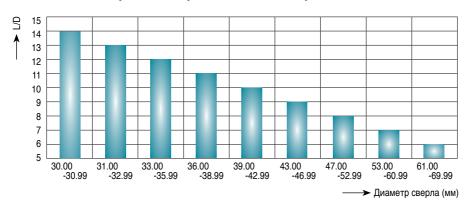
■ Допуск G6 (для направляющей втулки)

Диаметр направляющей втулки (омм)	Допуск (мм)
10.01-18.0	+0.006 - +0.017
18.01-30.0	+0.007 - +0.020
30.01-50.0	+0.009 - +0.025
50.01-65.0	+0.010 - +0.029

■ Допуск h6 (для диаметра сверла)


Диаметр сверла (øмм)	Допуск (мм)
10.01-18.0	-0.006 - 0
18.01-30.0	-0.013 - 0
30.01-50.0	-0.016 - 0
50.01-65.0	-0.019 - 0

Размер пилотного отверстия


Диаметр инструмента (мм)	Допуск пилотного отверстия	Глубина пилотного отверстия (мм)
30.00-39.00	H8	Min. 10.0
39.01-45.00	H8	Min. 12.5
45.01-57.00	H8	Min. 15.0
57.01-69.00	H8	Min. 17.5

ТЕХНИЧЕСКОЕ РУКОВОДСТВО

▶ Расход СОЖ для сверл HFD

Зависимость глубины сверления от диаметра

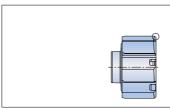
Пластина и направляющая пластина

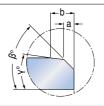
Диаметр инструмента		Направляющая		
(мм)	Наружная	Внутренняя	Центральная	пластина
30.00-33.00	NPMT 06504 RG	NPMT 06504 RG	NPMT 06504 LG	PAD-GO07CD
33.01-36.00	NPMT 06504 RG	NPMT 06504 RG	NPMT 0804 LG	PAD-GO07CD
36.01-39.00	NPMT 0804 RG	NPMT 06504 RG	NPMT 0804 LG	PAD-GO07CD
39.01-42.00	NPMT 0804 RG	NPMT 0804 RG	NPMT 0804 LG	PAD-GO08CD
42.01-45.00	NPMT 0804 RG	NPMT 0804 RG	NPMT 09504 LG	PAD-GO08CD
45.01-48.00	NPMT 09504 RG	NPMT 0804 RG	NPMT 09504 LG	PAD-GO10CD
48.01-51.00	NPMT 09504 RG	NPMT 09504 RG	NPMT 09504 LG	PAD-GO10CD
51.01-57.00	NPMT 09504 RG	NPMT 09504 RG	NPMT 12504 LG	PAD-GO10CD
57.01-63.00	NPMT 12504 RG	NPMT 09504 RG	NPMT 12504 LG	PAD-GO12CD
63.01-69.00	NPMT 12504 RG	NPMT 12504 RG	NPMT 12504 LG	PAD-GO12CD

> Зубья развертки

■ Прямые зубья

В основном используется для обработки глухих отверстий, обычно на заходной фаске позитивный угол. Стружка свободно выводится при продувании.


■ Левосторонние канавки



Используются только для сквозных отверстий. Левосторонние канавки выталкивают стружку вперед. Стружка не повреждает поверхность канавок. Обработка головками с левосторонними зубьями более стабильна, чем с прямыми. Поэтому вероятность возникновения вибрации ниже. Головки с левосторонними зубьями применяются для прерывистой обработки и отверстий неправильной формы.

Параметры режущей кромки

При выборе развретки важно правильно подобрать геометрию кромки для обработки припуска на развертывание

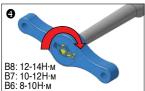
Обозначение кромки	β°	а(мм)	γ°	р(мм)
Α	45°	0.5	-	-
В	25°	1.07	-	-
С	45°	0.5	8°	0.75
D	30°	0.5	4°	1.85

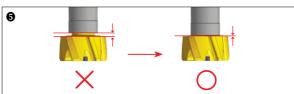
Обозначение кромки	β°	а(мм)	γ°	р(мм)
E	45°	0.2	-	-
F	90°	-	-	-
G	75°	0.15	-	-
Х	Специальная кромка (без обозначения)			

Припуск на развертывание (в зависимоти от диаметра)

Припуск на развертывание - это припуск, который должен быть снят при развертывании. Рекомендуется оставлять различный припуск в зависимости от материала заготовки и качества предварительного отверстия. Предварительное отверстие должно быть прямолинейным и гладким, без глубоких царапин.

Отверстие (Øмм) Материал	<9.5	9.5-11.5	11.5-13.5	13.5-16	16-32	>32
Сталь и чугун	0.07-0.10	0.07-0.15	0.10-0.20	0.10-0.30	0.10-0.30	0.20-0.40
Алюминий и латунь	0.07-0.10	0.10-0.15	0.15-0.25	0.20-0.30	0.20-0.40	0.20-0.50


Техническое руководство


▶ Сборка

■ Первая сборка

- Очистить посадочное место на державке (Рис. 1)
- Очистить крепежный конус головки
- Установить зажимной винт в державку и повернуть на 2-3 оборота по часовой стрелке (Рис. 2)
- Установить головку развертки на винт. Головка устанавливается только в определенном положении относительно винта (поверните головку до правильного положения) (Рис. 3)
- Вручную повернуть головку пока она прочно сядет в кармане Затянуть специальным ключом: 12-14 H⋅м (державка должна быть зажата в адаптере) (Рис. ④)
- Убедитесь, что между державкой и головкой развертки нет зазора (Рис. 6)

Замена головки

- Ослабить крепление головки, повернув ключ против часовой стрелки
- Вручную повернуть головку еще на один оборот
- Снять головку с корпуса развертки. Крепежный винт должен остаться внутри!!!
- Очистить посадочное место на державке (Рис. 1)
- Очистить крепежный конус головки
- Установить головку развертки на винт. Головка устанавливается только в определенном положении относительно винта (поверните головку до правильного положения) (Рис. <a>§)
- Вручную повернуть головку. Сначала вращайте ее без винта, затем после 1/6 оборота головка закрутится на винт. Поворачивайте голвоку пока она прочно сядет в карман.
 Если винт вращается вместе с головкой сначала снимите головку и затяните винт еще на один оборот
- Затянуть специальным ключом: 12-14 Н·м (державка должна быть зажата в адаптере) (Рис. 4)
- Убедитесь, что между державкой и головкой развертки нет зазора (Рис. 6)

Типы отверстий

■ Сквозное отверстие

В корпусе развертки для сквозных отверстий отверстие для подачи СОЖ расположено за пластиной, что обеспечивает отвод стружки вперед и предотвращает царапины на поверхности отверстия.

Более того, за направляющими пластинами расположены дополнительные отверстия для подачи смазки, которая уменьшает трение между направляющими пластинами и поверхностью отверстия.

■ Глухое отверстие

В корпусе развертки для глухих отверстий отверстие для подачи СОЖ расположено в передней части державки. При обработке глухих отверстий СОЖ и стружка выводятся обратно из отверстия.

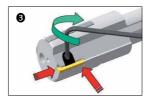
▶ Передние углы и геометрии режущих кромок

■ 4 стандартных угла в плане:

Обозначение	L (мм)	I (мм)		Применение
A	3	1	15°/3°/	Высокая чистота поверхности при низких режимах резания
В	1.3	0.5	300 32	Универсальное применение, идеально подходит для высокоскоростной обработки
С	0.55		75° L	Для обработки алюминия и латуни
D	0.6	0.2	300/30/	Для глухих отверстий и низких подач

■ 3 стандартных угла резания

Обозначение	Угол (°)	Применение
00	0°{	Для обработки чугуна
06	6°/	Универсальное применение
12	12°/	Для обработки нержавеющих сталей и алюминия


Замена пластины

 Повернуть регулировочный винт на 1 оборот против часовой стрелки.

 Повернуть крепежный винт против часовой стрелки сверху и/или по часовой стрелке снизу, вращая обе стороны одновременно.

- Снять пластину. Очистить пластину и карман. Установить пластину острой кромкой наружу.

 Прижать пластину к ограничителю и двум установочным штифтам.
 Затянуть зажимной клин повернув зажимной винт по часовой стрелке сверху или против часовой стрелки снизу.

Наладка

Существует два способа наладки: с помощью микрометра и установочного устройства.

- Микрометр с круговой шкалой
- Недорогое и доступное решение для небольших производств
- Не рекомендуется использовать в связи с риском повреждения режущей кромки

- Установочное устройство, расположенное между центрами
- Быстрое время настройки
- Модульная система
- Высокая точность
- Отсутствует риск повреждения режущей кромки

■ Обозначение TaeguTec: TB-SETTING L450

Использование микрометра

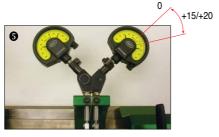
- Установить микрометр на правильный диаметр при помощи прецизионных блоков.
- Отрегулировать передний диаметр и обратный конус поворотом регулировочного винта по часовой стрелке.

Передний диаметр должен быть больше, чем задний диаметр примерно на 0.015мм.

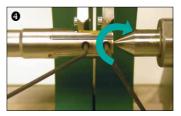
Использование установочного устройства

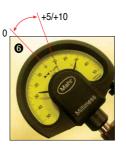
- ТаедиТес предлагает использовать механическое установочное устройство, которое обеспечивает простую, быструю и точную настройку.
- Благодаря модульной конструкции устройство может использоваться для настройки стандартных, а также специальных и более сложных разверток.

Техническое руководство


▶ Использование установочного устройства

Установить развертку между установочными штифтами


Повернуть и установить пластину к индикаторам


Настроить переднюю сторону пластины на +15/20 микрон

Использовать направляющую пластину в качестве исходной точки для установки индикаторов на ноль

Затянуть регулировочные винты по часовой стрелке

Настроить заднюю часть пластины на +5/10 микрон

ТЕХНИЧЕСКОЕ РУКОВОДСТВО

▶ Допуск отверстия

	аметр (мм)								Допус	ск (µm))						
>D	≤D	B10	C9	C10	D8	D9	D10	E7	E8	E9	F6	F7	F8	G6	G7	H6	H7
-	3	+180 +140	+85 +60	+100 +60	+34 +20	+45 +20	+60 +20	+24 +14	+28 +14	+39 +14	+12 +6	+16 +6	+20 +6	+8 +2	+12 +2	+6 0	+10 0
3	6	+180 +140	+100 +70	+118 +70	+48 +30	+60 +30	+78 +30	+32 +20	+38 +20	+50 +20	+18 +10	+22 +10	+28 +10	+12 +4	+16 +4	+8 0	+12
6	10	+208 +150	+116 +80	+138 +80	+62 +40	+76 +40	+98 +40	+40 +25	+47 +25	+61 +25	+22 +13	+28 +13	+35 +13	+14 +5	+20 +5	+9 0	+15
10	14	+220	+138	+165	+77	+93	+120	+50	+59	+75	+27	+34	+43	+17	+24	+11	+18
14	18	+150	+95	+95	+50	+50	+50	+32	+32	+32	+16	+16	+16	+6	+6	0	0
18	24	+244	+162	+194	+98	+117	+149	+61	+73	+92	+33	+41	+53	+20	+28	+13	+21
24	30	+160	+110	+110	+65	+65	+65	+40	+40	+40	+20	+20	+20	+7	+7	0	0
30	40	+270 +170	+182 +120	+220 +120	+119	+142	+180	+75	+89	+112	+41	+50	+64	+25	+34	+16	+25
40	50	+280 +180	+192 +130	+230 +130	+80	+80	+80	+50	+50	+50	+25	+25	+25	+9	+9	0	0
50	65	+310 +190	+214 +140	+260 +140	+146	+174	+220	+90	+106	+134	+49	+60	+76	+29	+40	+19	+30
65	80	+320 +200	+224 +150	+270 +150	+100	+100	+146	+60	+60	+60	+30	+30	+30	+10	+10	0	0

Техническое руководство

ТЕХНИЧЕСКОЕ РУКОВОДСТВО

▶ Допуск отверстия

								Допус	ж (µm))							
H8	H9	H10	JS6	JS7	K6	K7	M6	M7	N6	N7	P6	P7	R7	S7	T7	U7	X7
+14	+25 0	+40 0	±3	±5	0 -6	0 -10	-2 -8	-2 -12	-4 -10	-4 -14	-6 -12	-6 -16	-10 -20	-14 -24	-	-18 -28	-20 -30
+18	+30	+48	±4	±6	+2 -6	+3 -9	-1 -9	0 -12	-5 -13	-4 -16	-9 -17	-8 -20	-11 -23	-15 -27	-	-19 -31	-24 -36
+22	+36	+58	±4.5	±7.5	+2 -7	+5 -10	-3 -12	0 -15	-7 -16	-4 -19	-12 -21	-9 -24	-13 -28	-17 -32	-	-22 -37	-28 -43
+27	+43	+70 0	±5.5	±9	+2 -9	+6 -12	-4 -15	0 -18	-9 -20	-5 -23	-15 -26	-11 -29	-16 -34	-21 -39	-	-26 -44	-33 -51 -38 -56
+33	+52	+84	+6 5	±10.5	+2	+6	-4	0	-11	-7	-18	-14	-20	-27	-	-33 -54	-46 -67
0	0	0	10.5	10.5	-11	-15	-17	-21	-24	-28	-31	-35	-41	-48	-33 -54	-40 -61	-56 -77
+39	+62	+100	_α	±12.5	+3	+7	-4	0	-12	-8	-21	-17	-25	-34	-39 -64	-51 -76	
0	0	0	10	112.5	-13	-18	-20	-25	-28	-33	-37	-42	-50	-59	-45 -70	-61 -86	
+46	+74	+120	±9.5	±15	+4	+9	-5	0	-14	-9	-26	-21	-30 -60	-42 -72	-55 -85	-76 -106	
0	0	0	13.3	110	-15	-21	-24	-30	-33	-39	-45	-51	-32 -62	-48 -78	-64 -94	-91 -121	

Решение проблем Проблема Изображение

Сверла со сменными пластинами

Проблема	Изображение	Причина	ерла со сменными пластинами Решение	
Проолема	изооражение		т ешение	
		- Некорректные режимы резания	- Использовать рекомендованные режимы резания	
Аномальный износ		- Некорректные режимы резания	- Заменить пластину с более подходящей геометрией и сплавом для данного применения	
пластины		- Недостаточное количество СОЖ	Обеспечить подачу достаточного количества СОЖ Обеспечить достаточную концентрацию подачи СОЖ Использовать внутренний подвод СОЖ после остановки подачи СОЖ снаружи Проверить направление наружной подачи СОЖ	
		- Использование неподходящей пластины	- Заменить пластину	
Скол	3	- Нарост на режущей кромке	- Увеличить скорость резания или заменить геометрию пластины	
		- Неравномерная поверхность	- Снизить подачу при сверлении поверхности	
		- Слабые параметры станка	- Проводить обработку на оборудовании с достаточной мощностью	
		- Нестабиьная фиксация	- Использовать приспособление с более прочной фиксацией	
			- Недостаточное количество СОЖ	Обеспечить подачу достаточного количества СОЖ Обеспечить достаточную концентрацию подачи СОЖ Использовать внутренний подвод СОЖ после остановки подачи СОЖ снаружи Проверить направление наружной подачи СОЖ
		- Несоответствующие режимы резания	- Использовать рекомендованные режимы резания	
		- Скол пластины	- Заменить пластину	
Вибрация		- Вибрация во время обработки	- Проверить межосевое расстояние - Повернуть сверло на 180°	
		- Использование изношенных пластин	- Заменить пластину до того как потери на истирание пластины составят 0.3мм	
		- Очень плохая шероховатость поверхности	- Перед сверлением выровнять поверхность	
		- Использование сверла с большим вылетом	- Использовать сверло с меньшим вылетом	
		- Обработка пакета	- Использовать сильную фиксацию инструмента	
		- Использование поврежденной пластины	- Заменить пластину	
		- Использование неподходящей оснастки	- Проверить оборудование и приспособление	

Сверла со сменными пластинами

Проблема	Изображение	Причина	па со сменными пластинами Решение
·		- Заусенец образуется во время обработки	- Применять рекомендованные режимы резания - Использовать сверло с небольшим вылетом
Заусенец	2,15	- Заусенец появляется на заготовке, закрепленной в токарном станке	- Проверить оснастку токарного станка - Использовать сверло с небольшим вылетом
Неправильный	?	- Конические отверстия (увеличенный/уменьшенный размер отверстия)	 Настроить скорость резания и подачу согласно рекомендованным режимам резания Увеличить подачу СОЖ Проверить оснастку токарного станка Отрегулировать межосевое расстояние на токарном станке
диаметр отверстия	hiddelinidadidadidadidadidadidadidadidadidadid	- Конические отверстия (Различный размер отверстия на входе и выходе)	- Настроить скорость резания и подачу согласно рекомендованным режимам резания - Увеличить подачу СОЖ - Использовать сверло с небольшим вылетом
		- Пакет	- Использовать сильную фиксацию инструмента - Снизить подачу
	/	- Недостаточное количество СОЖ	Обеспечить подачу достаточного количества СОЖ Обеспечить достаточную концентрацию подачи СОЖ Использовать внутренний подвод СОЖ вместо наружного
Плохая шероховатость отверстия		- Неправильно подобранная геометрия и сплав пластины	- Заменить на пластину с более подходящей геометрией и сплавом для данного применения
		- Слабые параметры станка	- Проверить оснастку станка
		- Некорректные режимы резания	- Настроить скорость резания и подачу согласно рекомендованным режимам резания - Снизить подачу
		- Недостаточный крутящий момент станка	- Снизить подачу
Остановка станка	STOP	- Налипание металла заготовки на пластину	- Проверить крепление винта пластины - Проверить подачу СОЖ - Проверить режимы резания
Забивание стружки		- Плохой контроль стружки	- Проверить подачу СОЖ - Использовать внутренний подвод СОЖ вместо наружного - Увеличить подачу СОЖ - Снизить подачу - Увеличить скорость резания
		- Неправильно подобранная геометрия пластины	- Заменить на пластину с более подходящей геометрией и сплавом для данного применения
		- Использование поврежденной пластины	- Заменить пластину

Монолитные сверла

		ihooyic	IVI	монолитные сверла		
Проблема	Элемент сверла	Изображение	Причина	Решение		
			- Очень высокая подача (упрочненные материалы)	- Снизить подачу		
			- Слабый корпус сверла	- Использовать сверло с меньшим вылетом и центровочное сверло		
Скол	Вершина	The same	- Слишком малая вершина	- Проверить вершину		
			- Недостатчоное притупление вершины	- Проверить притупление		
			- Слабая фиксация	- Проверить приспособление		
			- Некорректные режимы резания (скол нароста на кромке)	- Увеличить скорость резания и снизить подачу		
			- Слабый корпус сверла	- Использовать сверло с меньшим вылетом и снизить скорость резания		
Скол	Режущая кромка	Yo	- Недостаточное притупление кромки	- Проверить притупление		
			- Недостаточный задний угол	- Проверить задний угол инструмента		
			- Неправильно подобранный сплав	- Использовать сверло в подходящем сплаве		
			- Слабая оснастка	- Заменить оснастку		
			- Несоответствующий сплав	- Использовать сверло в подходящем сплаве		
	Радиус при		- Слабая оснастка	- Заменить оснастку		
Скол	вершине			- Вибрация оправки	- Проверить направление зажима оправки	
	кромки		- Недостаточное количество СОЖ	- Увеличить подачу СОЖ		
			- Слабая фиксация	- Проверить приспособление		
			- Прерывистое резание на входе в отверстие	- Выровнять отверстие и снизить подачу на 30~50%		
			- Несоответствующая форма ленточки	- Большая обратная конусность и небольшая ширина ленточки		
Скол	Ленточка	You	- Слабый корпус сверла	- Использовать сверло с меньшим вылетом и центровочное сверло		
Olton	, ioirio ina		- Недостаточное количество СОЖ	- Увеличить подачу СОЖ		
			- Слабая фиксация	- Проверить приспособление		
			- Слишком большой износ	- Уменьшить время перезаточки		
			- Слишком высокие режимы резания	- Уменьшить скорость резания и подачу		
	.,	- A	- Слабый корпус сверла	- Использовать сверло соответсвующей геометрии и центровочное сверло		
Поломка	Корпус сверла	10	- Недостаточное количество СОЖ	- Увеличить подачу СОЖ		
			- Слабая фиксация	- Проверить приспособление		
			- Слишком большой износ и скол	- Уменьшить время перезаточки		
			- Плохой отвод стружки	- Использовать сверло другой формы		

Монолитные сверла

		JOOJICIVI		тионолинные овержа		
Проблема	Элемент сверла	Изображение	Причина	Решение		
			- Несоответствующая скорость резания и подача	- Уменьшить скорость резания и увеличить подачу		
Слишком		10	- Недостаточный задний угол	- Увеличить задний угол		
большой	Режущая кромка	You	- Несоответствующий сплав	- Использовать сверло в подходящем сплаве		
износ	·		- Недостаточное количество СОЖ	- Увеличить подачу СОЖ и заполнить бак для СОЖ		
			- Слишком большой износ	- Уменьшить время перезаточки		
			- Высокая скокрость резания и подача	- Уменьшить скорость резания и увеличить подачу		
			- Недостаточный задний угол	- Увеличить задний угол		
Слишком	Угол при	0	- Несоответствующий сплав	- Использовать сверло в подходящем сплаве		
большой износ	вершине		- Вибрация оправки	- Проверить направление зажима оправки		
			- Недостаточное количество СОЖ	- Увеличить подачу СОЖ и заполнить бак для СОЖ		
			- Слишком большой износ	- Уменьшить время перезаточки		
			- Слишком высокая скорость резания	- Уменьшить скорость резания		
Слишком		Y	- Прерывистое резание на входе в отверстие	- Выровнять отверстие и снизить подачу на 30~50%		
большой	Ленточка		To a	You	- Вибрация оправки	- Проверить направление зажима оправки
износ			- Недостаточное количество СОЖ	- Увеличить подачу СОЖ и заполнить бак для СОЖ		
			- Слишком большой износ	- Уменьшить время перезаточки		
			- Слишком низкая скорость резания	- Увеличить скорость резания		
Нарост	Режущая кромка	Yo	- Слишком большая ленточка	- Использовать сверло с более острой кромкой		
			- Недостаточное количество СОЖ	- Увеличить подачу СОЖ и заполнить бак для СОЖ (внутренняя подача СОЖ)		
предвар	етры для рительного итроля	- Станок с хо - Жесткое пр - Соответств - Жесткое кр	кодящего инструмента для дан орошей жесткостью шпинделя оиспособление вующие режимы резания оепление оправки статочного количества СОЖ			

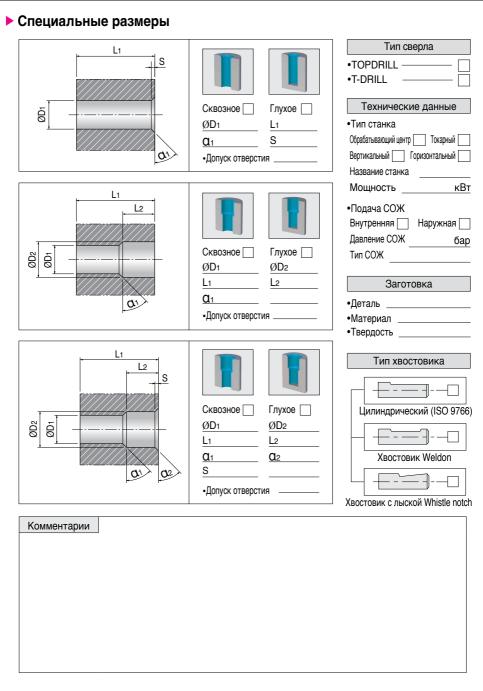
Раздел	Проблема	Причина	Решение		
	F	- Несоответсвующая скорость и подача	- Увеличить скорость резания и снизить подачу		
		- Слишком большой износ кромки	- Уменьшить время перезаточки		
	Увеличение	- Несоответсвующая форма вершины	- Выбрать соответствующую геометрию и шлифовать до необходимого размера		
Размеры	размера	- Слабая оснастка	- Заменить оправку		
		- Вибрация оправки (включая колебания кромки)	- Проверить направление зажима оправки		
		- Очень высокое давление СОЖ	- Уменьшить давление СОЖ		
		- Повреждение стружкой	- Откорректировать режимы резания		
Размеры	Уменьшение размера	- Несоответствующие режимы резания	- Увеличить скорость резания и снизить подачу		
	Vozeferne		- Очень большой износ ленточки	- Уменьшить время перезаточки	
D		- Вибрация оправки	- Проверить направление зажима оправки		
Размеры	Колебания	- Недостаточное количество СОЖ	- Увеличить подачу СОЖ		
		- Слабая фиксация	- Проверить приспособление		
		- Несоответствующие режимы резания	- Снизить подачу		
		- Обработка отверстия с плохой шероховатостью и наклоном на входе	- Выровнять отверстие и снизить подачу на 30~50%		
Положение		- Вибрация оправки	- Проверить направление зажима оправки		
		- Слабая оснастка	- Заменить оправку		
		- Отсутствие пилотного отверстия	- Пилотное отверстие (используйте сверло с углом при вершине больше на 5~10°)		
		- Слишком большой износ	- Уменьшить время перезаточки		
		- Слабый корпус сверла	- Подобрать соответствующую геометрию инструмента		
Форма	Прямолинейность	- Вибрация оправки (включая колебания кромки)	- Проверить направление зажима оправки		
+ opina		- Плохая шероховатость певерхности отверстия на входе	- Выровнять поверхность отверстия и сделать пилотное отверстие		
		- Слабая фиксация	- Проверить приспособление		
		- Повреждение стружкой	- Откорректировать режимы резания		

Монолитные сверла

Раздел	Проблема	Причина	Решение
	- Francisco	- Слишком большой износ	- Уменьшить время перезаточки
		- Недостаточный задний угол	- Уменьшить задний угол
Форма	Округленность	- Слабый корпус сверла	- Подобрать соответствующую геометрию инструмента
		- Вибрация оправки (включая колебания кромки)	- Проверить направление зажима оправки
		- Несоответствующие режимы резания	- Увеличить подачу
Форма	Цилиндричность	- Очень большой износ ленточки	- Уменьшить время перезаточки
		- Вибрация оправки (включая колебания кромки)	- Проверить направление зажима оправки
		- Несоответствующие режимы резания	- Увеличить скорость резания и снизить подачу
		- Слишком большой износ	- Уменьшить время перезаточки
Шероховатость		- Вибрация оправки	- Проверить направление зажима оправки
поверхности		- Слабая оснастка	- Заменить оправку
		- Недостаточное количество СОЖ	- Увеличить подачу СОЖ и заполнить бак для СОЖ
		- Повреждение стружкой	- Откорректировать режимы резания
0-0.00000000000000000000000000000000000		- Длинная стружка	- Увеличить подачу и подобрать соответствующую геометрию инструмента
Стружкодробление		- Растянутая стружка	- Проверить размер притупления, скол и поломку
		- Задний угол очень большой	- Уменьшить задний угол
Колебания		- Слабый корпус сверла	- Подобрать соответствующую геометрию инструмента
		- Повреждение стружкой	- Откорректировать режимы резания

Решение проблем T-DEEP

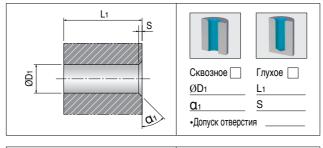
Проблема	Причина	Решение			
	- Несоответствующие режимы резания	- Откорректировать скорость резания и подачу			
	- Слишком малая и глубокая стружколомающая геометрия или радиус	- Подобрать стружколомающую геометрию			
Очень мелкая	- Неправильно подобранная геометрия инструмента	- Использовать соответствующую геометрию			
стружка	- Несоосность хвостовика и шпинделя	- Наладить соосность			
	- Изменение материала	- Регулировать скорость резания и подачу			
	- Направляющая втулка большего размера	- Заменить направляющую втулку			
	- Плохие исходные условия (заготовка нецентрованная)	- Отцентровать заготовку			
	- Несоответствующие режимы резания	- Откорректировать скорость резания и подачу			
Очень крупная	- Слишком крупная или неглубокая стружколомающая геометрия или радиус	- Подобрать стружколомающую геометрию			
стружка	- Направляющая втулка большего размера или несоосность втулки	- Наладить соосность или заменить направляющую втулку			
	- Неоднородность материала заготовки	- Корректировать скорость резания и подачу или заменить стружколомающую геометрию			
	- Неисправный подающий механизм (обычно системы гидравлической подачи)	- Проконсультироваться с производителем оборудовнаия или техническим специалистом			
	- Несоответствующий твердый сплав	- Подобрать соответсвующий сплав в таблице сплавов			
Непостоянная	- Забивание стружки из-за плохой подачи СОЖ	- Увеличить подачу СОЖ			
форма стружки	- Несоответствующая геометрия инструмента	- Подобрать геометрию инструмента			
	- Несоосность хвостовика и шпинделя	- Наладить соосность			
	- Чрезмерная вибрация из-за недостаточной жесткости заготовки или инструмента	- Проконсультироваться с производителем оборудования или инструмента			
	- Неправильно подобранная СОЖ	- Проконсультироваться с производителем оборудования			
	- Направляющая втулка большего или меньшего размера	- Заменить направляющую втулку			
	- Несоответсвующая геометрия кромки	- Подобрать стружколомающую геометрию			
	- Неоднородность материала заготовки	- Корректировать скорость резания и подачу или заменить стружколомающую геометрию			
Витая	- Неисправный подающий механизм (обычно системы гидравлической подачи)	- Проконсультироваться с производителем оборудовнаия или техническим специалистом			
стружка	- СОЖ загрязнена мелкими частицами	- Очистить СОЖ			
	- Химическое сродство материала заготовки и твердого сплава инструмента	- Проверить возможность замены сплава			
	- Скол режущей кромки	- Заменить головку			
	- Слишком низкая подача	- Увеличить подачу			

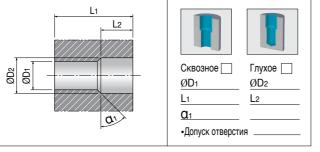

	_	_	_	_
7-	v	E	E	r

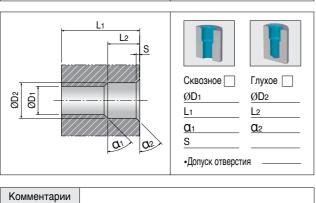
Проблема	- Причина	Решение
	- Притупленный инструмент	- Заострите режущую кромку если требуется
	- Недостаточная подача СОЖ	- Проверить расход и давление СОЖ
	- Загрязненная СОЖ	- Проверить СОЖ
Поломка твердосплавной кромки	- Допуск направляющей втулки очень жесткий	- Замените втулку или используйте сврело меньшего диаметра
	- Несоосность хвостовика и шпинделя	- Наладить соосность
	- Отклонение геометрии инструмента	- Исправить геометрию
	- Изменение материала	- Регулировать скорость резания и подачу
	- Несоответствующая скорость резания и подача	- Откорректировать режимы
	- Несоответствующий твердый сплав	- Подобрать соответсвующий сплав
	- Изношенная направляющая втулка	- Заменить направляющую втулку
Плохая	- Чрезмерно теплая СОЖ	- Проверить температуру СОЖ и систему подачи
стойкость	- Несоответствующая СОЖ	- Заменить если возможно
	- Несоосность хвостовика и шпинделя	- Наладить соосность
	- Отклонение геометрии инструмента	- Исправить геометрию
	- Изменение материала	- Регулировать скорость резания и подачу
	- Несоосность	- Проверить и отрегулировать соосность
	- Несоответствующее демпфирование хвостовика, что вызывает вибрацию	- Обеспечьте наличие демпфера вибраций
	- Стружколомающая геометрия намного выше или ниже оси	- Подобрать стружколомающую геометрию
	- Неправильная геометрия головки или направляющей пластины	- Корректно подобрать геометрию
Плохая	- Несоосность заготовки и головки	- Наладить соосность
шероховатость поверхности	- Отклонение заготовки	- Улучшить крепление и жесткость
	- Чрезмерная вибрация	- Контактировать с производителем инструмента или оборудования
	- Отклонение геометрии инструмента	- Исправить геометрию
	- Слишком низкая скорость резания	- Увеличить скорость резания
	- Очень низкая подача особенно при обработке упрочненных материалов	- Увеличить подачу
	- Неравномерная подача	- Отрегулировать подающий механизм

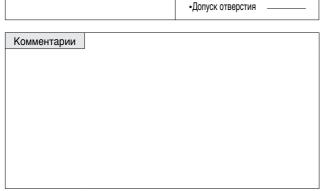
54

Форма запроса специнструмента Сверла со сменными пластинами

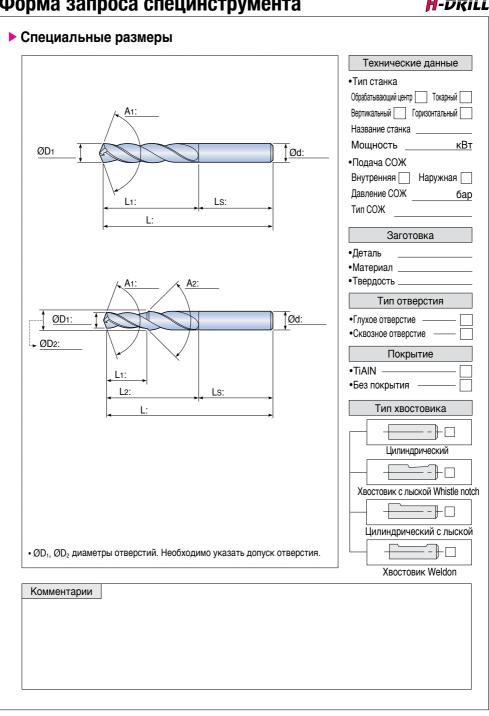



Техническое руководство


Форма запроса специнструмента



Специальные размеры



Технические данные
•Тип станка
Обрабатывающий центр Токарный
Вертикальный Горизонтальный
Название станка
Мощность кВт
•Подача СОЖ
Внутренняя П Наружная
Давление СОЖ бар
Тип СОЖ
Заготовка
•Деталь •Материал •Твердость
Тип хвостовика
Цилиндрический (ISO 9766)
Хвостовик с лыской Whistle notch
Цилиндрический с лыской

Хвостовик Weldon

•Диаметр хвостовика: _ •Длина хвостовика: _

Техническое руководство

Форма запроса специнструмента

	★: Поля обязательные для заполне		
Название компании :	Номер запроса :		
Адрес:	Дата запроса :		
Контактное лицо :	Номер клиента :		
Заготовка (желательно приложить чертеж)			
Название изделия			
Диаметр отверстия (ø)	(MM)		
Глубина отверстия (длина сверления)	(MM)		
Количество отверстий	. ,		
Допуск отверстия			
Шероховатость поверхности (Rz,Ra)			
Отклонение (мм/100)			
Прямолинейность (мм/100)			
Материал			
Материал (DIN,AISI,JIS)			
Твердость (HB,HS,HRC)			
Состояние [*]	□ Отожженный □ Закаленный □ Отпущенный		
	□ Литье □		
	Другое		
Станок			
Производитель			
Тип/модель станка			
Жесткость	🗆 Хорошая 🔲 Удовлетворительная 🔲 Плохая		
Дата производства			
Модернизация	□ Инструмент и заготовка □ М/ОЦ □ Другое		
Двойное врщение (иснтрумента и заготовки)	Инструмент и заготовка		
Вращение заготовки (WR)			
Вращение заготовки (TR)			
Защитное устройство			
Мощность двигателя	(кВт)		
Тип СОЖ			
Производитель СОЖ			
На водной основе	□ Растворимая □ Эмульсия %		
На масляной основе			
Давление СОЖ	(бар)		
Расход СОЖ	(л/мин)		

Форма запроса специнструмента

_	_	_	_
 .,	-	-	v
 _	_	_	

Сверлильная головка			
Сверлильная головка(ø)		(мм)	
Резьба	Внутренняя	□ Наружная	
Напайная		1,	
Со сменными пластинами	□ Настраиваемая	Нерегулируемая	
Покрытие	□ С покрытием	□ Без покрытия	
Тип покрытия	□TiN	☐TiAIN	□ Другое
• Сверление			
• Растачивание			
Угол резания★	□ 20°	☐ 45°	
Напайные, с пластинами	□ Нормальный угол	□ Острый угол	
Предварительный размер (на сторону)		(MM)	
Форма дна [*]	□ С полным радиусом	□ Плоское дно	□ С углом при вершине
<u> </u>	□ Сложный профиль		
• Кольцевое сверление			
Диаметр стержня(ø)		(мм)	
Внутренний диаметр трубы(ø)		(мм)	
Наружный диаметр трубы(ø)		(мм)	
Труба			
Наружный диаметр(ø)		(MM)	
Общая длина(L)		(MM)	
Внутренняя резьба			
Наружная резьба	4-заходная	2-заходная	□ 1-заходная
Резьба на трубе	□ С олной стороны	□ С двух сторон	
Длина втнутренней трубы		(MM)	
Паз на внутренней трубе	с одной стороны	□ С двух сторон	
Система сверления			
Однотрубная		STS	
Двухтрубная		OTS	
Условия обработки			
Сверление сквозных отверстий			
Сверление глухих отверстий			
Сверление пересеченных отверстий*			
Эскиз схемы сверления			
Общая информация	Производство		
Количество в год:			
Состояние в настоящее время:			
· · ·			

Бланк заказа р	<u> </u>	★: Поля обязательные для заполнен				
Дата :		Дистрибьютор:				
Компания * :		Крайний срок исполнения:				
Контактное лицо:						
Адрес:						
Причина запроса		Заготовка				
Новый инструмент 🗌	Проблема 🗌	Обозначение *				
Качество		Твердость *				
Время цикла		Диаметр предварительного				
Конкурент		отверстия★ (Допуск:)				
Другое		Глубина *				
		Тип отверстия				
Существующий инстру	мент					
Производитель						
Тип						
Скорость и подача						
Стойкость						
Количество зубьев						
СОЖ		Способ закрепления				
-		•				
Станок		СОЖ				
Модель		Масло				
- +	Вертикальный	Минимальное количество СОЖ				
Тип★	Горизонтальный	Эмульсия				
0	Многошпиндельный	Состав смеси				
Оснастка *		Давление СОЖ				
Максимальные обороты		Требования к отверстию				
Мощность		_ Допуск★				
Точность шпинделя СОЖ		— Шероховатость поверхности(Ra) [★]				
UUM		Округленность				
		Прямолинейность				
		Цилиндричность				
		Соосность				
Инструмент						
Тип *	ТМ(со сменной головкой)	ТВ(с лезвием) П ТS(монолитная) Другое (
	(
Диаметр резания *						
Подача СОЖ ★	Внутренняя П Наруж	ная 🗌				
Тип хвостовика ★	7. — 17)					
Патрон	Цанговый П Гидрав	влический 🗆 Другое 🗆				
Регулируемый адаптер						

ТЕХНИЧЕСКОЕ РУКОВОДСТВО

-Фрезерование

Оощая информация	IE2
Быстросменные фрезы	TE6
Информация об продукте	TE10
Решение проблем	TE20
Углы врезания	TE21

Расчет потребляемой мощности

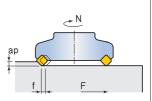
 $W = \frac{Q \times Ks}{60 \times 102 \times \eta} (\kappa B\tau)$

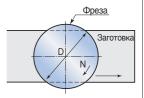
W: Потребляемая мощность (кВт)

Нр: Мощность в л.с.

 $Hp = \frac{W}{0.75}$

Q: Объем снимаемого металла (см³/мин)

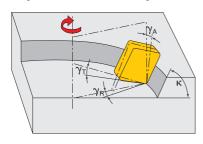

L: Ширина фрезерования (мм)


F: Подача стола (мм/мин)

ар: Глубина резания (мм)

Q = $\frac{L \times F \times ap}{1000}$ = $\frac{ap \times f \times V \times L \times Z}{\pi \times D}$ Ks : Удельная сила резания (кг/мм²) n : КПД станка (0.5 - 0.75)

η: КПД станка (0.5 - 0.75)



▶Удельная сила резания(Ks)

Материал		Твердость (НВ)	Удельная сила резания (кг/мм²)	
Углеродистая сталь		100 - 150	220	
		120 - 180	230	
		200 - 250	250	
Потитотоги		120 - 200	230	
Легированная сталь		250 - 300	275	
Нержавеющая сталь 300		-	325	
Нержавею	цая сталь 400	-	300	
	Углеродистая сталь	< 225	210	
Стальное литье	Легированная сталь	150 - 250	220	
,,,,,,,,,	Нержавеющая сталь	150 - 300	250	
Серый чугу	Н	150 - 300	120 - 140	
Высокопро	чный чугун	125 - 300	125 - 180	
Алюминий		-	100 - 140	
Медь		-	140 - 200	

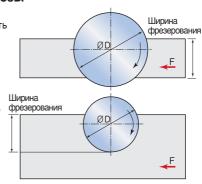
▶Перечень основных углов на фрезах

: Главный угол в плане

γ А : Осевой передний угол

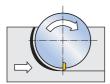
: Боковой передний угол $|\gamma T|$: Фактический передний угол

Техническое руководство

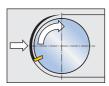

Рекомендации по выбору диаметра фрезы

Максимальная ширина фрезерования должна составлять до 70% диаметра фрезы D

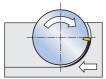
D 1.3 - 1.5 Ширина фрезерования


Если мощность станка ограничена или заготовка слишком широкая, то диаметр фрезы следует выбирать таким образом, чтобы фрезерование заготовки было выполнено за несколько проходов.

Если требуемого диаметра фрезы не существует, то правильное положение корпуса фрезы даст хорошие результаты при обработке.

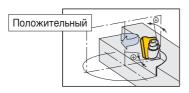

Ширина фрезерования = 3/4D

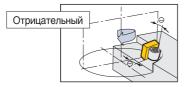
Рекомендации по выбору вида фрезерования


Встречное фрезерование

При встречном фрезеровании направление подачи заготовки и направление вращения фрезы не совпадают. Таким образом, толщина стружки изменяется от нуля до максимального значения при выходе зуба из заготовки. При встречном фрезеровании наблюдается высокая температура в зоне резания, которая вызывает повышенный износ пластин

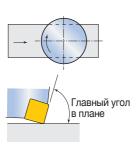
Обработка паза


При обработке паза фреза находится внутри заготовки и сила резания попеременно изменяется в радиальном направлении. В результате, если шпиндель станка не имеет достаточной жесткости возникает вибрация. Другими словами, обработка паза является комбинацией встречного и попутного фрезерования. Для обработки паза необходимо использовать фрезы с положительной геометрией зубьев. а также работать с заниженной подачей и подводом СОЖ в зону резания.


■ Попутное фрезерование

Попутное фрезерование имеет некоторые преимущества по сравнению со встречным и, как правило, дает лучший результат. В этом случае направление подачи заготовки и направление вращения фрезы совпадают. Другими словами, толщина стружки изменяется от максимального значения при входе до нуля при выходе из заготовки. Стойкость инструмента при этом выше, а также температура в зоне резания ниже.

Рекомендации по выбору переднего угла


- Хороший выход стружки из зоны резания
- Рекомендуется для обработки материалов с твердостью ниже 300HB, и для маломощных станков

- Рекомендуется для обработки чугунов, чтобы уменьшить длину стружки

- Положительный передний угол более популярен, так как характеризуется более высокой производительностью и выделением меньшего количества тепла. Кроме того, при использовании позитивного переднего угла меньше вероятность повреждения станка, в отличие от негативного переднего угла, который требует большей мощности.
- Для фрезерование материалов, отличающихся высоко твердостью и предъявляющих повышенные требования к прочности режущей кромки, рекомендуется применять тип с негативным передним углом.

▶ Рекомендации по выбору главного угла в плане

Главный угол в плане торцевых фрезы, как правило, меньше 90 градусов. Это способствует эффективному удалению стружки и повышению прочности режущей кромки.

Как правило, угол в плане находится в пределах от 45 до 75 градусов. Наиболее часто применяемый главный угол в плане - 45 градусов, поскольку он является наиболее эффективным с точки эрения потребления мощности в широком диапазоне фрезерования от чистового до чернового.

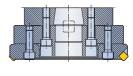
Главный угол в плане 45 градусов рекомендуется для фрезерования в тяжелых условиях, поскольку прочность режущих кромок в этом случае очень высока. Кроме того, осевая сила резания практически равна радиальной силе резания, что очень важно при фрезеровании с большим вылетом фрезы.

Угол в плане 45 рекомендуется для обработки чугунов, если есть большая вероятность повреждения вершины пластин.

Малые углы в плане рекомендуются применять в случаях, когда из-за формы поверхности заготовки позиционирования фрезы может быть затруднено.

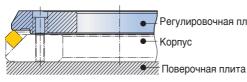
Fa: Осевая сила резания Fr: Радиальная сила резания

Техническое руководство

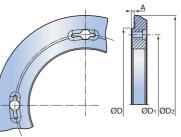

▶ Угол в плане и толщина стружки

Угол в плане	Толщина стружки	Подача
90°	T = f	Меньше
75°	T = f x sin75° ≒ 0.965f	
45°	T = f x sin45° ≒ 0.707f	Больше
75.5° ap * 3/4ap * 1/2ap * 1/4ap * 0 *	T = f T = f x sin75° = 0.968f T = f x sin60.0° = 0.866f T = f x sin41.3° = 0.660f T = 0	Меньше Больше

Быстросменные фрезы

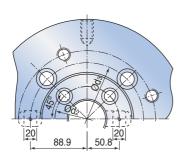


■ Уменьшение веса фрезы


Если диаметр быстросменной фрезы более 200 мм, они состоят из двух частей: фрезы и переходника. Переходник крепится к шпинделю станка, а фреза крепится к переходнику. В результате вес фрезы снижается наполовину. Это позволяет уменьшить нагрузку на шпиндель и повысить безопастность работы.

- Сокращение времени простоя при замене фрезы Время простоя при использовании быстросменных фреза сокращено на 20% по сравнению с традиционными фрезами.
- Отличное качество обработанной поверхности Поверхность, обработанная быстросменными фрезами, отличается превосходным качеством благодаря установленным высокоточным пластинам и отсутствует торцевое биение. Возможность обработки на высоких подачах.
- Простая и жесткая конструкция Простоя конструкция крепления пластин, состоящая только из клиньев и винтов клиньев.

Регулировочная плита



Регулировочная плита Корпус

Обозначение		Размеры (мм)				
Ооозначение	A	D	D ₁	D ₂		
SP03 - I	5.0	47	-	85		
SP04 - I	5.0	60	-	105		
SP05 - I	5.0	82	-	130		
SP06 - I	5.0	96	-	165		
SP08 - I	5.0	160	137	203		
SP10 - I	5.0	210	187	253		
SP12 - I	5.0	274	250	318		
SP14 - I	5.0	314	290	358		
SP16 - I	5.0	354	332	403		

Адаптер для быстросменной фрезы

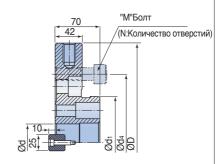
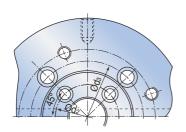



Fig.1

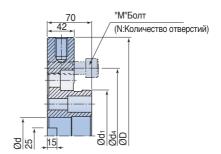
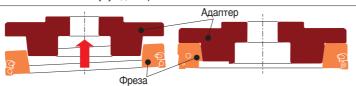


Fig.2

Обориония		Размеры (мм)							
Обозначение	D	d	d ₁	d ₂	dз	d ₄	М	N	(KT)
QA 08 K/M	198	47.625	63.5	101.6	-	114.3	M16x40	4	10
QA 10 K/M	248	60	133.35	101.6	-	177.8	M16x50	4	15
QA 12 K/M	313	60	146.05	101.6	177.8	215.9	M20x50	4	19.7
QA 14 K/M	353	60	215.9	101.6	177.8	260.4	M20x50	6	24
QA 16 K/M	398	60	254.0	101.6	177.8	304.8	M20x50	6	29

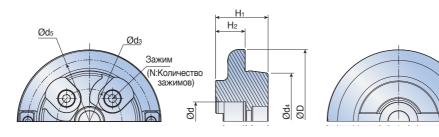
• К: Адаптер с ключем для настройки (Рис.1) М: Адаптер без ключа настройки (Рис.2)



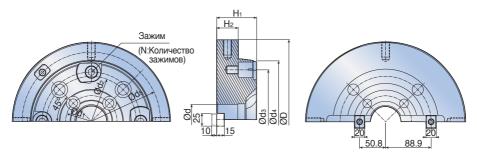

■ Небольшой вес фрезы Сниженный вес фрезы почти в два раза, по сравнению с обычной фрезой, обеспечивает легкую и безопасную установку инструмента.

■ Быстрая и простая система крепления Быстросменная и простая система с доработанной конструкцией обеспечивает сокращение времени смены инструмента.

Двойной контакт по двум поверхностям
 Отличная точность и повторяемость и высокой жесткостью.


■ Легкий монтаж по конусу адаптера

Процесс установки


■ Простой монтаж и самоцентрирование по конусу адаптера

Размеры (мм)							Bec				
Обозначение	D	d	d1	d2	d3	d4	d5	N	H ₁	H2	(KT)
TQCA D160-FM40	150	40	-	-	68	100.37	129	4	31	55	4.17
TQCA D200-FM60	190	60	-	-	108	140.37	169	4	31	55	5.89
TQCA D250-FM60	240	60	-	-	158	190.37	219	4	31	55	10.4

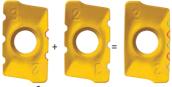
▶ Новый адаптер для крепления на торец шпинделя

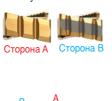
Обозначение		Размеры (мм)								Bec	
Ооозначение	D	d	d1	d2	d 3	d4	d5	N	H1	H2	(KT)
TQCA D250	248	60	101.6	-	158	190.37	219	4	72	48	17.56
TQCA D315	313	60	101.6	177.8	195	230.33	273.5	4	77	42	39.05
TQCA D355	353	60	101.6	177.8	235	270.33	313.5	8	77	42	55.53
TQCA D400	398	60	101.6	177.8	280	315.33	358.5	8	77	42	68.47


TE 10


▶ Руководство по использованию геометрии Splitter

3 канавки на одной режущей кромки и 2 канавки на противоположной

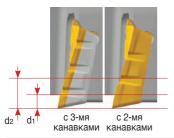

 Для простоты установки пластин на корпус одна из сторон пластины помечена темным цветом

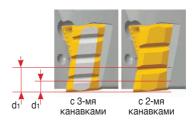


Примечание: Когда устанавливаются пластины на корпус фрезы необходимо чередовать стороны пластин. Например 1 зуб - 2 канавки, 2 зуб - 3 канавки и так далее.

■ При наложении обоих сторон (А и В) геометрия Splitter дробит стружку на мелкие части, уменьшая силу резания и вибрации, при этом возможно увеличить производительность.

 Для лучшего эффекта, необходимо использовать корпуса фрез с четным количеством эффективных зубьев.




Также можно применять корпуса фрез с нечетным количеством эффективных зубьев.

■ Необходимо соблюдать одно условие, глубина должна быть ≥ d1

Глубина резания	APKT 17	APKT 12		
d ₁	3mm	2.4mm		
d ₂	6.5mm	5.2mm		

Глубина резания	ANHX 16
d ₁	2.5mm
d ₂	6mm

▶ Область применения геометрии Splitter

■ Пластины Splitter предназначены для повышения производительности и снижение сил резания, а также вибраций.

Большой съем металла за один проход

Большой вылет инструмента

Не жесткое закрепление заготовки или не жесткая заготовка

Инструкция по установке

Индикатор
Пластина
Винт пластины
Регулировочный винт
Крепежный винт
Т-ключ

Переместите регулировочный клин (4) в его самое нижнее положение, вращая винт клина (5) по часовой стрелке.

«Пожалуйста, не прилагайте очень большое усилие.

Установите пластину с новой режущей кромкой. Прежде, чем поместить пластину, убедитесь, что посадочное место полностью очищено.

«Пожалуйста, полностью зафиксируйте винт пластины(3), так как после установки переустановка невозможна.

Измерьте биение фрезы, когда все пластины будут установлены, и выберите самую высокую пластину в качестве эталона.

«Пожалуйста, удостоверьтесь, что кромка пластины не была повреждена при установке. Применяйте только оптимальное усилие.

 Установите высоту фрезы, поднимая пластину-эталон, путем проворачивания винта клина (5) против часовой стрелки.

«Увеличивайте высоту на 0,01мм (.004")от самой высокой пластины.

Отрегулируйте осевое онение остальных пластин таким же способом, как и для пластины-эталона

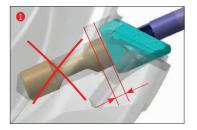
«Обратите внимание, что максимальная высота регулирования не должна превышать 0,1мм (.004")

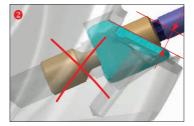
5 Отрегулируйте -2 биение в диапазоне 0,005мм, вращая ключ постепенно.

Если биение вне
 допустимого предела,
 пожалуйста, повторите
пункты 1-2-5

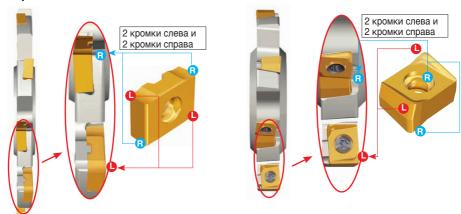
Регулирование биения закончено. После того, как все винты пластин зафиксированы, нельзя их зажимать повторно.

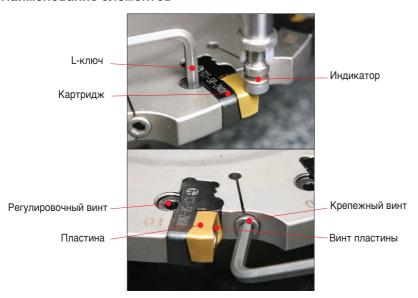
▶ Инструкция по использованию индикатора





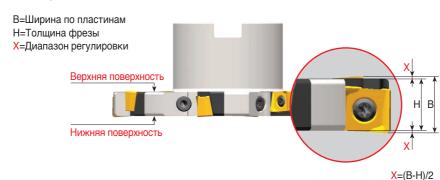
▶ Дополнительные меры предосторожности


- Помещая новую пластину удостоверьтесь, что регулировочный клин (4) находится в самом нижнем его положении. Прежде чем извлечь пластину из фрезы, регулировочный клин (4) должен полностью находиться в нижней позиции.
- Тщательно очищайте пластину и посадочное место прежде, чем поместить новую пластину/кромку.
- Во время установки регулировочного клина (4) на корпус фрезы, пожалуйста, удостоверьтесь, что регулировочный клин (4) зажат, пока он не достигнет нижней позиции.



▶ Фрезы TOPSLOT с ZNHT & ZNHU

■ Один тип пластины устанавливается с левой и с правой стороны


▶ Наименование элементов

▶ Инструкция по регулировки ширины фрезы

■ Фланцевый тип

▶ Процесс регулировки

■ Дисковый тип

1 Индексировать неиспользуемые пластины плотно к картриджу.

● Пластины передней поверхности резца должны быть установлены следуя сходной желаемой величине. ② Повернуть зажимной винт на 60-90 градусов против часовой стрелки

(3) а)Подогнать данный винт до желаемого показателя "X", вычисляемого относительно базовой плоскости и ширины резания

b) Затянуть зажимной винтом.

- * Устранить люфт, подогнать картриджи по направлению вверх, следуя "X" величине.
- * Повернуть указанный винт по часовой стрелке с целью опускания картриджа.
- * Повернуть указанный винт против часовой стрелки с целью поднятия вверх картриджа.

■ Фланцевый тип

Для пластин "Нижней поверхности", повторите действияДискового типа.

Подогнать картридж к желаемой величине (A+X) при помощи поворота винта, затем затянуть зажимным винтом.

⑤ Пластины передней поверхности резца должны быть установлены следуя сходной желаемой величине.

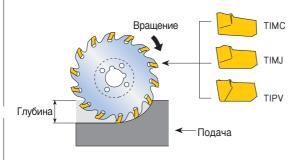
Для установки лицевой поверхности, использование подушки обязательно и уровень высоты должен дойти до "0".

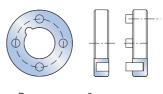
З Прислонить "Нижнюю поверхность" резца к подушке и повернуть зажимной винт на 1/2~1 оборот против часовой стрелки.

- * Повернуть указанный винт по часовой стрелке с целью опускания картриджа...
- * Повернуть указанный винт против часовой стрелки с целью поднятия вверх картриджа

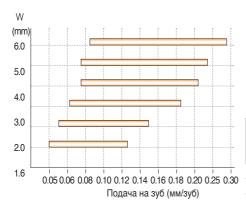
- Важные примечание при регулировке
 - Все установки должны проводиться на чистой и ровной поверхности.
- Для улучшения точности действий, удалите все инородные тела с пластин и с места крепления перед установкой.
- "Х" величина должна быть идентична как для лицевой поверхности так и для нижней поверхности, при настройке

пфрезе Ex) WIDTH 10 - 12 WIDTH 20 - 23


- При устранении люфта, картриджи должны быть установлены вверх как на нижней поверхности так и на лицевой поверхности для достижения желаемой ширины.


▶ Дисковые фрезы

- Диаметры дисковых фрез: 75мм, 100мм, 125мм, 160мм, 250мм
- Ширина резания: 1.6мм 6.35мм
- Геометрия: положительный передний угол
- Применение: нарезание канавок и отрезка
- Обрабатываемые материалы: углеродистые, легированные, нержавеющие стали, чугуны, алюминий, труднообрабатывающие металлы.
- Особенности и преимущества дисковых фрез:
- ширина резания от 1,6 мм
- простая установка пластин
- надежное крепление пластин
- фиксатор пластины с автоматической установкой
- фланец для максимальной жесткости
- минимальное радиальное биение
- эффективный отвод стружки
- сниженное усилие резания
- повышенная стойкость
- ЭКОНОМИЧНОСТЬ


▶ Рекомендованное направление подачи для дисковых фрез TSC

Рекомендуемый комплект фланцев для фрез 2-го типа

Рекомендованная подача (в зависимости от ширина пластины)

Скорость подачи для радиальной глубины резания =>1/4 диаметра фрезы. Для радиальной глубины резания <1/4 диаметра фрезы подачу увеличить на %.

резания/диаметра фрезы		l	l .	1/10	
фрезы подачу увеличить на %	0%	15%	30%	45%	45%

Врезание

Фрезами T-CLAMP ULTRA возможно выполнять попутное, встречное фрезерование и врезную отрезку. При попутном фрезеровании на входе получается толстая стружка, а на выходе - тонкая. Рекомендуется использовать пластины с фаской.

При встречном фрезеровании на входе получается тонкая стружка, а на выходе - толстая. Рекомендуется использовать пластины с острой кромкой.

Попутное фрезерование необходимо применять во всех возможных случаях, особенно при замене дисковых фрез из быстрорежущей стали на фрезы T-CLAMP ULTRA. На станках с компенсатором зазора предпочтительно использовать попутное фрезерование.

Установка фрезы

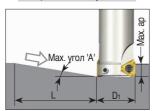
Для предотвращения выдавливания шлицов на оправке и обеспечения дополнительной устойчивости во время форсированных режимов резания рекомендуется использовать комплекты приводных фланцев.

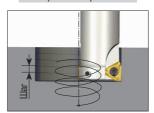
Установка пластин

Вручную установите пластину в ячейку и зафиксируйте ее при помощи деревянного или пластикового молотка.

Это обеспечит автоматическое позиционирование пластины и минимальное радиальное биение. Перед установкой пластин ячейки должны быть чистыми и без стружки.

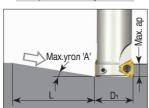
Техническое руководство	
TE 20	


Решение пр Проблема	Причина	Решение
Нормальный износ по задней поверхности	Предпочтительный износ - Высокая скорость резания - Не износостойкий сплав - Низкая подача	- Снизить скорость резания - применить более износостойкий сплав - Увеличить подачу
Скалывание	Начинается с микро сколов - очень твердый сплав - острая кромка - сильный угол при врезании - большой вылет - вибрация инструмента - подача очень большая - налипание	- выбрать более прочный сплав - выбрать более мощную геометрию - снизить скорость и подачу при входе - уменьшить вылет инструмента - улучшить жесткость СПИД - уменьшить скорость резания
Налипание на кромке	Трение, давление, нагревание - очень низкая скорость резания - работа без СОЖ - негативная геометрия кромки	- увеличить скорость резания - использовать СОЖ - применить позитивную (острую) геометрию
Образование насечек	Плохое качество поверхности - упрочненная поверхность - заусенец	- уменьшить скорость резания - использовать более прочную геометрию - поменять угол в плане - снизить подачу
Термические трещины	Перебои с подачей СОЖ (термический удар) - неправильная подача СОЖ - высокая скорость резания - прерывистое резание	- отключить или включить СОЖ - снизить скорость резания - снизить подачу - выбрать более прочный сплав - выбрать сплав более устойчивый к термическому удару

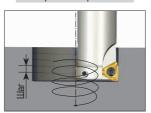

Режимы резания: углы врезания

Спиральное врезание

3PK(H)T 06


Диа. фрезы (D ₁)	Вр	езание под угл	ОМ	Спиральное врезание		
диа. фрезы (D1)	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø12	3.7	4.7	73	19.5	24	1.3
Ø14	2.8	4.7	96	23.5	28	1.2
Ø16	2.3	4.7	117	27.5	32	1.2
Ø17	2.0	4.7	135	29.5	34	1.2
Ø18	2.0	4.7	135	31.5	36	1.3
Ø20	1.6	4.7	168	35.5	40	1.2
Ø21	1.5	4.7	180	37.5	42	1.2
Ø22	1.5	4.7	180	39.5	44	1.2
Ø25	1.5	4.7	180	45.5	50	1.4
Ø30	1.2	4.7	224	55.5	60	1.4
Ø32	1.2	4.7	224	59.5	64	1.5
Ø35	1.0	4.7	269	65.5	70	1.4
Ø40	0.7	4.7	385	75.5	80	1.2

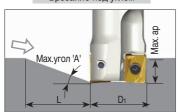
3PK(H)T 10

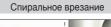

Диа. фрезы (D ₁)	Вр	езание под угл	ОМ	Спі	иральное вреза	ние
диа. фрезы (D1)	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø16	7.0	7.0	57	24.7	32	2.8 5.2
Ø20	3.3	7.0	121	33.9	40	2.1 3.1
Ø21	3.2	7.0	125	35.9	42	2.2 3.1
Ø22	3.2	7.0	125	37.9	44	2.4 3.3
Ø25	2.8	7.0	143	43.5	50	2.4 3.3
Ø26	2.6	7.0	154	45.9	52	2.4 3.1
Ø30	2.0	7.0	201	53.9		2.2
Ø32	1.8	7.0	223	57.5	60	2.8 2.1
Ø33	1.7	7.0	236	59.9	64	2.7 2.1
Ø40	1.3	7.0	309	73.7	66	2.6 2.0
Ø50	1.0	7.0	401	93.7	80	2.4 2.0
Ø63	0.8	7.0	502	119.7	100	2.3 2.1
200	0.0	1.0	302		126	2.3

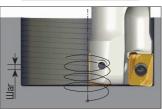
Спиральное врезание

3PK(H)T 15

Диа. фрезы (D ₁)	Вр	езание под угл	ОМ	Спі	иральное вреза	ние
диа. фрезы (D1)	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø32	3.2	11.0	197	53.5		3.2
202	0.2	11.0	107	55.5	64	4.8
Ø33	3.1	11.0	203	55.5	66	3.3 4.8
Ø35	3.1	11.0	203	59.5	00	3.5
<u>0</u> 35	3.1	11.0	203		70	5.1
Ø40	2.0	11.0	315	70.1		2.8
2.0	2.0	11.0	010	00.4	80	3.7
Ø50	1.5	11.0	420	90.1	100	2.8 3.5
~~~		44.0	570	116.1	100	2.7
Ø63	1.1	11.0	573		126	3.2
Ø80	0.8	11.0	788	150.3		2.6
200	0.0	11.0	700	100.5	160	3.0
Ø100	0.6	11.0	1051	190.5	200	2.5
				240.3	200	2.8
Ø125	0.5	11.0	1261	240.0	250	2.9
Ø460	0.0	11.0	0400	310.3		2.1
Ø160	0.3	11.0	2102		320	2.2
Ø200	0.2	11.0	3153	390.3		1.8
5200	U.Z	11.0	0100		400	1.9


# 3PK(H)T 19


Пиа donosi (Da)	Вр	езание под угл	ОМ	Спиральное врезание		
Диа. фрезы (D ₁ )	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø40	3.6	15.0	239	66.7		4.5
W-10	0.0	10.0	200		80	6.7
Ø50	2.2	15.0	391	87.9		3.9
200			00.		100	5.1
Ø63	1.7	15.0	506	113.9		4
200	1.7	10.0	300		126	5
Ø80	1.3	15.0	661	147.9		4.1
200	1.3	15.0	001		160	4.8
Ø100	1.0	15.0	860	187.9		4.1
0100	1.0	15.0	000		200	4.7
Ø125	0.8	15.0	1075	237.9		4.2
Ø125	0.0	15.0	1075		250	4.7
Ø160	0.6	15.0	1433	307.9		4.1
0100	0.0	15.0	1433		320	4.5
Ø200	0.4	15.0	2150	387.9		3.5
W200	0.4	13.0	2100		400	3.7
Ø250	0.2	15.0	2866	487.9		3.3
W23U	0.3	15.0	∠000		500	3.5


# Режимы резания: углы врезания











## ANH(M)X 11

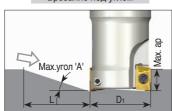
The discount (D.)	Вр	езание под угл	ОМ	Спі	иральное вреза	ние
Диа. фрезы (D ₁ )	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø25	1.5	11.0	420	30		0.3
	-			32	50	1.7 0.4
Ø26	1.4	11.0	450	- 02	52	1.7
Ø32	1.1	11.0	573	44	0.4	0.6
				46	64	1.6 0.6
Ø33	1.0	11.0	631	70	66	1.5
Ø40	0.8	11.0	788	60		0.7
~	0.0			00	80	1.5
Ø50	0.6	11.0	1051	80	100	0.8 1.4
Ø63	0.4	11.0	1576	106		0.8
200	0.4	11.0	1370		126	1.2
Ø80	0.3	11.0	2102	140	100	0.8
				180	160	0.7
Ø100	0.2	11.0	3153	100	200	0.7
Ø125	0.2	11.0	3153	230		1.0
W123	0.2	11.0	3133		250	1.2

### ANH(M)X 16

Due draeu (D.)	Вр	езание под угл	ОМ	Спі	иральное вреза	ние
Диа. фрезы (D ₁ )	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø32	1.2	15.0	716	44	0.4	0.7
				46	64	1.8 0.6
Ø33	1.0	15.0	560	10	66	1.5
Ø40	0.9	15.0	955	60	00	0.8
				80	80	1.7
Ø50	0.8	15.0	1075		100	1.9
Ø63	0.6	15.0	1433	106	126	1.2 1.8
<b>~~~</b>	0.45	45.0	1011	140	120	1.3
Ø80	0.45	15.0	1911		160	1.7
Ø100	0.35	15.0	2457	180	200	1.3 1.6
Ø125	0.05	15.0	3439	230	200	1.2
שוצט	0.25	15.0	3439	200	250	1.5
Ø160	0.15	15.0	5732	300	320	1.0
Ø200	0.1	15.0	8599	380		0.8
Ø200	0.1	15.0	0099		400	0.9

24






### AVMTOG

Диа. фрезы (D ₁ )	Вр	езание под угл	IOM	Сп	иральное вреза	ние
диа. фрезы (D1)	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об
Ø8	1.0	5.0	287	9	16	0.0
Ø10	8.0	5.0	36	13		1.1
Ø11	6.0	5.0	48	15	20	3.7 1.1
Ø12	6.0	5.0	48	17	22	3.1 1.4
Ø13	5.5	5.0	52	19	24	3.4 1.5
Ø14	4.8	5.0	60	21	26	3.3 1.6
Ø15	4.3	5.0	67	23	28	3.1 1.6
	_		-	25	30	3.0 1.7
Ø16	4.0	5.0	72	27	32	3.0 1.6
Ø17	3.5	5.0	82	29	34	2.8
Ø18	5.0	5.0	57		36	4.2
Ø19	4.8	5.0	60	31	38	2.7 4.3
Ø20	4.0	5.0	72	33	40	2.4 3.7
Ø21	3.5	5.0	82	35	42	2.3 3.4
Ø25	3.0	5.0	95	43	50	2.5 3.5
Ø32	2.0	5.0	143	57	64	2.3 3.0
Ø40	1.5	5.0	191	73	80	2.3 2.8









#### VDKT UO

Диа. фрезы (D ₁ )  Мах.угол (A°)  Мах. ар (mm)  Міл. длина (L)  Міл. диам.  Мах. диам.  Вайстована  14  Вайстована  Вайстована  14  Вайстована  Вайстована  14  Вайстована  В	ание	иральное вреза	Спи	ОМ	езание под угл		Tuo diposi (D.)
Ø10         7.5         9.0         68         20           Ø12         7.3         9.0         70         16         24           Ø14         6.0         9.0         86         18         28           Ø16         4.9         9.0         105         21.08         32           Ø17         4.4         9.0         117         23.08         34           Ø18         4.0         9.0         129         36           Ø20         3.4         9.0         152         29.08         40           Ø21         3.1         9.0         166         31.08         42           Ø22         2.8         9.0         184         33.08         42           Ø25         1.8         9.0         287         39.08         50           Ø26         2.0         9.0         258         41.08         52           Ø30         2.2         9.0         258         53.08         60           Ø32         2.0         9.0         258         64         64           Ø33         1.7         9.0         303         55.08         66           Ø40         1.5	Мах. шаг/об.	Мах. диам.		Min. длина (L)	Max. ap (mm)	Мах.угол (A°)	диа. фрезы (D1)
Ø12         7.3         9.0         70         16         24           Ø14         6.0         9.0         86         18         28           Ø16         4.9         9.0         105         21.08         32           Ø17         4.4         9.0         117         34         34           Ø18         4.0         9.0         129         25.08         36           Ø20         3.4         9.0         152         29.08         40           Ø21         3.1         9.0         166         31.08         42           Ø22         2.8         9.0         184         33.08         44           Ø25         1.8         9.0         287         50           Ø26         2.0         9.0         258         41.08         52           Ø30         2.2         9.0         234         49.08         60           Ø32         2.0         9.0         258         53.08         64           Ø33         1.7         9.0         303         66         69.08           Ø40         1.5         9.0         344         89.08         80           Ø50	1.4 3.5	20	14	68	9.0	7.5	Ø10
Ø12         7.3         9.0         70         24           Ø16         4.9         9.0         105         21.08           Ø17         4.4         9.0         117         23.08           Ø18         4.0         9.0         129         25.08           Ø20         3.4         9.0         152         29.08           Ø21         3.1         9.0         166         31.08           Ø22         2.8         9.0         184         33.08           Ø25         1.8         9.0         287         39.08           Ø26         2.0         9.0         258         50           Ø30         2.2         9.0         234         49.08           Ø32         2.0         9.0         258         53.08           Ø40         1.5         9.0         344         80           Ø40         1.5         9.0         344         80           Ø50         1.1         9.0         469         89.08           Ø50         1.1         9.0         469         89.08           Ø63         0.8         9.0         645         115.08           Ø63 <t< td=""><td>1.4</td><td>20</td><td>16</td><td></td><td></td><td></td><td></td></t<>	1.4	20	16				
Ø14         6.0         9.0         86         18         28           Ø16         4.9         9.0         105         32           Ø17         4.4         9.0         117         34           Ø18         4.0         9.0         129         25.08           Ø20         3.4         9.0         152         29.08           Ø21         3.1         9.0         166         31.08           Ø22         2.8         9.0         184         33.08           Ø25         1.8         9.0         287         50           Ø26         2.0         9.0         258         41.08           Ø30         2.2         9.0         234         49.08           Ø32         2.0         9.0         258         60           Ø33         1.7         9.0         303         55.08           Ø40         1.5         9.0         344         80           Ø50         1.1         9.0         469         89.08           Ø63         0.8         9.0         645         115.08	4.1	24	10	70	9.0	7.3	Ø12
Ø16       4.9       9.0       105       21.08       32         Ø17       4.4       9.0       117       23.08       34         Ø18       4.0       9.0       129       25.08       36         Ø20       3.4       9.0       152       29.08       40         Ø21       3.1       9.0       166       31.08       42         Ø22       2.8       9.0       184       33.08       44         Ø25       1.8       9.0       287       50       50         Ø26       2.0       9.0       258       41.08       52         Ø30       2.2       9.0       234       49.08       60         Ø32       2.0       9.0       258       64         Ø33       1.7       9.0       303       55.08       64         Ø40       1.5       9.0       344       80       80         Ø50       1.1       9.0       469       89.08       100         Ø63       0.8       9.0       645       115.08       126	1.1		18	86	9.0	6.0	Ø14
Ø17         4.4         9.0         117         23.08         34           Ø18         4.0         9.0         129         25.08         36           Ø20         3.4         9.0         152         29.08         40           Ø21         3.1         9.0         166         31.08         42           Ø22         2.8         9.0         184         33.08         44           Ø25         1.8         9.0         287         39.08         50           Ø26         2.0         9.0         258         41.08         52           Ø30         2.2         9.0         234         49.08         60           Ø32         2.0         9.0         258         53.08         64           Ø33         1.7         9.0         303         55.08         66           Ø40         1.5         9.0         344         80         80           Ø50         1.1         9.0         469         89.08         100           Ø63         0.8         9.0         645         115.08         126	3.9 1.2	28	04.00				
Ø17         4.4         9.0         117         23.08         34           Ø18         4.0         9.0         129         25.08         36           Ø20         3.4         9.0         152         29.08         40           Ø21         3.1         9.0         166         31.08         42           Ø22         2.8         9.0         184         33.08         44           Ø25         1.8         9.0         287         50           Ø26         2.0         9.0         258         41.08         52           Ø30         2.2         9.0         234         49.08         60           Ø32         2.0         9.0         258         53.08         64           Ø33         1.7         9.0         303         55.08         66           Ø40         1.5         9.0         344         80         80           Ø50         1.1         9.0         469         89.08         100           Ø63         0.8         9.0         645         115.08         126	3.7	32	21.00	105	9.0	4.9	Ø16
Ø18       4.0       9.0       129       25.08       36         Ø20       3.4       9.0       152       29.08       40         Ø21       3.1       9.0       166       31.08       42         Ø22       2.8       9.0       184       33.08       44         Ø25       1.8       9.0       287       39.08       50         Ø26       2.0       9.0       258       41.08       52         Ø30       2.2       9.0       234       49.08       60         Ø32       2.0       9.0       258       53.08       64         Ø33       1.7       9.0       303       55.08       66         Ø40       1.5       9.0       344       80       80         Ø50       1.1       9.0       469       89.08       100         Ø63       0.8       9.0       645       115.08       126	1.2		23.08	117	0.0	1.1	Ø17
Ø20         3.4         9.0         152         29.08         40           Ø21         3.1         9.0         166         31.08         42           Ø22         2.8         9.0         184         33.08         44           Ø25         1.8         9.0         287         50         50           Ø26         2.0         9.0         258         41.08         52           Ø30         2.2         9.0         234         60         60           Ø32         2.0         9.0         258         64         64           Ø33         1.7         9.0         303         55.08         66           Ø40         1.5         9.0         344         80         80           Ø50         1.1         9.0         469         89.08         100           Ø63         0.8         9.0         645         115.08         126	3.5	34		117	9.0	4.4	<u> </u>
Ø20         3.4         9.0         152         29.08         40           Ø21         3.1         9.0         166         31.08         42           Ø22         2.8         9.0         184         33.08         44           Ø25         1.8         9.0         287         39.08         50           Ø26         2.0         9.0         258         41.08         52           Ø30         2.2         9.0         234         49.08         60           Ø32         2.0         9.0         258         53.08         64           Ø33         1.7         9.0         303         55.08         66           Ø40         1.5         9.0         344         80         80           Ø50         1.1         9.0         469         89.08         100           Ø63         0.8         9.0         645         115.08         126	1.3		25.08	129	9.0	4.0	Ø18
Ø21         3.4         9.0         166         31.08         40           Ø22         2.8         9.0         184         33.08         44           Ø25         1.8         9.0         287         39.08         50           Ø26         2.0         9.0         258         41.08         52           Ø30         2.2         9.0         234         49.08         60           Ø32         2.0         9.0         258         53.08         64           Ø33         1.7         9.0         303         55.08         66           Ø40         1.5         9.0         344         80         80           Ø50         1.1         9.0         469         89.08         100           Ø63         0.8         9.0         645         115.08         126	3.4	36	00.00	120	0.0	0	~
Ø21     3.1     9.0     166     31.08       Ø22     2.8     9.0     184     33.08       Ø25     1.8     9.0     287     39.08       Ø26     2.0     9.0     258     41.08       Ø30     2.2     9.0     234     49.08       Ø32     2.0     9.0     258     53.08       Ø33     1.7     9.0     303     55.08       Ø40     1.5     9.0     344     69.08       Ø50     1.1     9.0     469     89.08       Ø50     1.1     9.0     645     115.08       Ø63     0.8     9.0     645     115.08       140.08	1.4	40	29.08	152	9.0	3.4	Ø20
Ø22     2.8     9.0     184     33.08     42       Ø25     1.8     9.0     287     39.08     50       Ø26     2.0     9.0     258     41.08     52       Ø30     2.2     9.0     234     49.08     60       Ø32     2.0     9.0     258     64       Ø33     1.7     9.0     303     55.08     66       Ø40     1.5     9.0     344     89.08     80       Ø50     1.1     9.0     469     89.08     100       Ø63     0.8     9.0     645     115.08     126	3.2 1.5	40	21.00				
Ø22       2.8       9.0       184       33.08       44         Ø25       1.8       9.0       287       39.08       50         Ø26       2.0       9.0       258       41.08       52         Ø30       2.2       9.0       234       49.08       60         Ø32       2.0       9.0       258       53.08       64         Ø33       1.7       9.0       303       55.08       66         Ø40       1.5       9.0       344       69.08       80         Ø50       1.1       9.0       469       89.08       100         Ø63       0.8       9.0       645       115.08       126	3.0	12	31.00	166	9.0	3.1	Ø21
Ø25     1.8     9.0     287     39.08     50       Ø26     2.0     9.0     258     41.08     52       Ø30     2.2     9.0     234     60       Ø32     2.0     9.0     258     53.08       Ø33     1.7     9.0     303     55.08       Ø40     1.5     9.0     344     69.08       Ø50     1.1     9.0     469     89.08       Ø63     0.8     9.0     645     115.08       440.08     126	1.4	72	33.08	101		0.0	~~~
Ø26         2.0         9.0         258         41.08         52           Ø30         2.2         9.0         234         49.08         60           Ø32         2.0         9.0         258         53.08         64           Ø33         1.7         9.0         303         55.08         66           Ø40         1.5         9.0         344         69.08         80           Ø50         1.1         9.0         469         89.08         100           Ø63         0.8         9.0         645         115.08         126	2.9	44		184	9.0	2.8	022
Ø26     2.0     9.0     258     41.08     52       Ø30     2.2     9.0     234     49.08     60       Ø32     2.0     9.0     258     53.08     64       Ø33     1.7     9.0     303     55.08     66       Ø40     1.5     9.0     344     80     80       Ø50     1.1     9.0     469     89.08     100       Ø63     0.8     9.0     645     115.08     126	1.2		39.08	207	0.0	1.0	(A)E
Ø30     2.2     9.0     234     49.08     60       Ø32     2.0     9.0     258     53.08     64       Ø33     1.7     9.0     303     55.08     66       Ø40     1.5     9.0     344     69.08     80       Ø50     1.1     9.0     469     89.08     100       Ø63     0.8     9.0     645     115.08     126	2.1	50		201	9.0	1.0	W25
Ø30     2.2     9.0     234     49.08     60       Ø32     2.0     9.0     258     53.08     64       Ø33     1.7     9.0     303     55.08     66       Ø40     1.5     9.0     344     69.08     80       Ø50     1.1     9.0     469     89.08     100       Ø63     0.8     9.0     645     115.08     126	1.4		41.08	258	9.0	20	Ø26
Ø32     2.0     9.0     258     53.08     64       Ø33     1.7     9.0     303     55.08     66       Ø40     1.5     9.0     344     69.08     80       Ø50     1.1     9.0     469     89.08     100       Ø63     0.8     9.0     645     115.08     126	2.4	52	40.00	200	0.0	2.0	
Ø32     2.0     9.0     258     53.08     64       Ø33     1.7     9.0     303     55.08     66       Ø40     1.5     9.0     344     69.08     80       Ø50     1.1     9.0     469     89.08     100       Ø63     0.8     9.0     645     115.08     126	2.0	00	49.08	234	9.0	2.2	Ø30
Ø33     1.7     9.0     303     55.08     66       Ø40     1.5     9.0     344     69.08     80       Ø50     1.1     9.0     469     89.08     100       Ø63     0.8     9.0     645     115.08     126	3.1 2.0	60	E2 00				
Ø33     1.7     9.0     303     55.08       Ø40     1.5     9.0     344     69.08       Ø50     1.1     9.0     469     89.08       Ø63     0.8     9.0     645     115.08       40.08     126	3.0	64	55.06	258	9.0	2.0	Ø32
Ø40     1.5     9.0     344     69.08     80       Ø50     1.1     9.0     469     89.08     100       Ø63     0.8     9.0     645     115.08     126	1.7	04	55.08	200	0.0	4.7	~~~
Ø50     1.1     9.0     469     89.08       Ø63     0.8     9.0     645     115.08       40.08     126	2.6	66		303	9.0	1./	Ø33
Ø50     1.1     9.0     469     89.08       Ø63     0.8     9.0     645     115.08       40.08     126	2.0		69.08	244	0.0	1.5	Ø40
<b>Ø63</b> 0.8  9.0  645  115.08  126	2.8	80		344	9.0	1.0	240
Ø63 0.8 9.0 645 115.08 126	2.0	100	89.08	469	9.0	11	Ø50
9.0 045 126	2.6	100	445.00	.50	0.0		~~~
140.00	1.9	106	115.08	645	9.0	0.8	Ø63
<b>~~~</b>	2.3 1.6	126	1/0 08				
0.5 9.0 1032 160	1.0	160	143.00	1032	9.0	0.5	Ø80

### **APKT 12**

Tue donocu (D.)	Вр	езание под угл	ОМ	Спі	иральное вреза	ние
Диа. фрезы (D ₁ )	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø16	12.5	12.0	54	17.5		0.5
210	12.0	12.0	04		32	9.5
Ø18	9.7	12.0	70	20.9	36	1.3 8.2
<b>COO</b>	0.0	10.0	101	24.9	- 50	1.6
Ø20	6.8	12.0	101		40	6.4
Ø21	6.2	12.0	111	26.9		1.7
WZ1	0.2	12.0	111		42	6.1
Ø25	8.0	12.0	85	34.9		3.7
~	0.0	.2.0		00.0	50	9.4
Ø26	7.5	12.0	91	36.9	Ε0	3.8
				48.9	52	9.1 3.9
Ø32	5.0	12.0	137	40.9	64	7.5
~~~	4.0	10.0	4.40	50.9	04	3.8
Ø33	4.6	12.0	149		66	7.1
Ø40	3.5	12.0	196	64.9		4.1
9040	3.3	12.0	190		80	6.5
Ø50	2.5	12.0	275	84.9		4.8
	2.0	12.0	270	110.0	100	5.8
Ø63	1.7	12.0	405	110.9	106	4.5
				144.9	126	5.0 4.6
Ø80	1.3	12.0	529	144.9	160	4.8

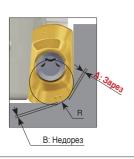
APKT 17

Tue dineer (Dr)	Вр	езание под угл	ОМ	Спі	иральное вреза	ние
Диа. фрезы (D ₁)	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø20	8.0	16.1	115	22		0.7
	0.0	10.1	110		40	7.5
Ø25	5.0	16.1	184	30.6	50	1.3 5.8
~~~				32.6	50	1.2
Ø26	4.0	16.1	230	02.0	52	4.9
Ø32	9.0	16.1	102	44.6		5.3
D02	3.0	10.1	102		64	13.5
Ø33	9.0	16.1	102	46.6		5.7
	0.0		.02	00.0	66	13.9
Ø40	5.0	16.1	184	60.6	80	4.8 9.3
~				80.6	00	6.3
Ø50	4.4	16.1	209	00.0	100	10.3
Ø63	3.2	16.1	288	106.6		6.5
200	0.2	10.1	200		126	9.4
Ø80	2.3	16.1	401	140.6	100	6.5
			141	180.6	160	8.6 6.8
Ø100	1.8	16.1	513	100.0	200	8.4
Ø40E	4.4	10.1	050	230.6	200	6.9
Ø125	1.4	16.1	659		250	8.1
Ø160	1.0	16.1	923	300.6		6.5
9100	1.0	10.1	923		320	7.5
Ø200	0.7	16.1	1318	380.6	400	5.9
		***	1.14		400	6.5








#### **AXMT 0602R-HF**

Диа. фрезы (D ₁ )	Вр	езание под угл	ОМ	Сп	иральное вреза	ание
диа. фрезы (D1)	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об
Ø8	0.3	0.5	96	14	16	0.1
Ø10	0.5	0.5	57	14	20	0.1 0.2
Ø11	1.0	0.5	29	18	22	0.3 0.5
Ø12	2.3	0.5	12	18	24	0.5 0.5
Ø13	4.5	0.5	6	18	26	0.5 0.5
Ø14	3.5	0.5	8	18	28	0.5 0.5 0.5
Ø15	3.0	0.5	10	26	30	0.5 0.5 0.5
Ø16	2.8	0.5	10	26	32	0.5 0.5
Ø17	2.5	0.5	11	26	34	0.5 0.5 0.5
Ø18	2.3	0.5	12	26	36	0.5 0.5 0.5
Ø19	2.2	0.5	13	26	38	0.5 0.5
Ø20	1.9	0.5	15	34	40	0.5 0.5
Ø21	1.7	0.5	17	34	42	0.5 0.5
Ø25	1.4	0.5	20	44	50	0.5 0.5 0.5
Ø32	1.0	0.5	29	58	64	0.5 0.5 0.5
Ø40	0.7	0.5	41	74	80	0.5 0.5 0.5

#### Технические данные для программированию

При написании УП выбирайте программируемый радиус "R" для каждого габарита пластины. При этом толщина необработанного материала будет составлять величину около значения "B" вдоль радиуса. При написании УП с выбранным "R" область зареза будет составлять "A"

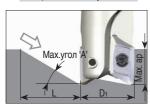
Чтобы не допустить зарез детали добавьте в стратегии дополнительный припуск "А" для черновой обработки. Информация по программируемым "R" в таблице ниже.

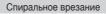


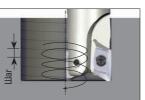
	Программируемый R	Зарез А	В Недорез			
	0.9	0	0.22			
AXMT 0602R-HF	1.0	0.01	0.19			
AXIVIT UUUZR-HF	1.5	0.16	0.05			
	2.0	0.35	0			
	1.5	0	0.47			
	1.7	0	0.29			
APKT 09T3R-HF	2.0 0.04		0.3			
	2.5	0.18	0.15			
	3.0	0.36	0.04			
	2	0	0.57			
	2.5	0.07	0.42			
APKT 1204R-HF	3	0.21	0.28			
	3.5	0.39	0.15			
	4	0.58	0.06			
: Рекомендованный программируемый 'R'						

#### APKT 09T3R-HF

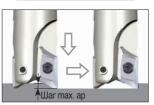
Диа. фрезы (D1)         Max.yroл (A°)         Max. ap (mm)         Min. длина (L)         Min. диам.         Max. диам.         Max. шаг/об.           Ø16         3.8         1.0         15         22         1.0           Ø17         3.5         1.0         16         24         1.0           Ø18         3.4         1.0         17         26         1.0           Ø20         3.0         1.0         19         30         1.0           Ø21         2.3         1.0         25         32         1.0           Ø22         2.0         1.0         29         34         1.0           Ø25         2.1         1.0         27         40         1.0           Ø26         2.0         1.0         29         42         1.0           Ø30         1.8         1.0         32         50         1.0           Ø30         1.8         1.0         32         60         1.0           Ø32         1.6         1.0         36         54         1.0           Ø33         1.5         1.0         38         56         1.0           Ø40         1.2         1.0         48	Tue donocu (D.)	Вр	езание под угл	ОМ	Спі	иральное вреза	ние
Ø17         3.8         1.0         15         32         1.0           Ø17         3.5         1.0         16         24         1.0           Ø18         3.4         1.0         17         26         1.0           Ø20         3.0         1.0         19         30         1.0           Ø20         3.0         1.0         19         30         40         1.0           Ø21         2.3         1.0         25         32         40         1.0           Ø22         2.0         1.0         29         34         42         1.0           Ø25         2.1         1.0         27         40         1.0         1.0           Ø25         2.1         1.0         27         40         1.0         1.0           Ø26         2.0         1.0         29         42         1.0           Ø30         1.8         1.0         32         50         1.0           Ø32         1.6         1.0         36         54         1.0           Ø33         1.5         1.0         38         66         1.0           Ø40         1.2         1.0 <th< th=""><th>диа. фрезы (D1)</th><td>Мах.угол (A°)</td><td>Max. ap (mm)</td><td>Min. длина (L)</td><td></td><td>Мах. диам.</td><td></td></th<>	диа. фрезы (D1)	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)		Мах. диам.	
Ø17         3.5         1.0         16         24         1.0           Ø18         3.4         1.0         17         26         34         1.0           Ø20         3.0         1.0         19         30         1.0         1.0           Ø21         2.3         1.0         25         32         40         1.0           Ø22         2.0         1.0         29         34         44         1.0           Ø25         2.1         1.0         27         40         1.0         1.0           Ø26         2.0         1.0         29         42         1.0           Ø30         1.8         1.0         32         50         1.0           Ø30         1.8         1.0         32         50         60         1.0           Ø32         1.6         1.0         36         54         64         1.0           Ø33         1.5         1.0         38         56         66         1.0           Ø40         1.2         1.0         48         70         1.0           Ø40         1.2         1.0         48         70         1.0           Ø5	Ø16	3.8	1.0	15	22	20	1.0
Ø18         3.4         1.0         17         26         34         1.0           Ø20         3.0         1.0         19         30         40         1.0           Ø21         2.3         1.0         25         32         42         1.0           Ø22         2.0         1.0         29         34         1.0         1.0           Ø25         2.1         1.0         27         40         1.0         1.0           Ø26         2.0         1.0         29         42         1.0           Ø30         1.8         1.0         32         50         1.0           Ø30         1.8         1.0         32         50         1.0           Ø32         1.6         1.0         36         54         1.0           Ø33         1.5         1.0         38         56         66         1.0           Ø40         1.2         1.0         48         70         1.0           Ø50         0.9         1.0         64         90         1.0           Ø50         0.5         1.0         115         116         126         1.0           Ø63 <t< th=""><th></th><th></th><th></th><th></th><th>24</th><th>32</th><th></th></t<>					24	32	
Ø20         3.4         1.0         17         36         1.0           Ø20         3.0         1.0         19         30         40         1.0           Ø21         2.3         1.0         25         32         1.0           Ø22         2.0         1.0         29         34         42         1.0           Ø25         2.1         1.0         27         40         1.0         1.0           Ø26         2.0         1.0         29         42         1.0         1.0           Ø30         1.8         1.0         32         50         60         1.0           Ø32         1.6         1.0         36         54         64         1.0           Ø33         1.5         1.0         38         56         66         1.0           Ø40         1.2         1.0         48         70         1.0           Ø50         0.9         1.0         64         90         1.0           Ø63         0.5         1.0         115         116         1.0	Ø17	3.5	1.0	16		34	1.0
Ø20         3.0         1.0         19         30         40         1.0           Ø21         2.3         1.0         25         32         1.0           Ø22         2.0         1.0         29         34         1.0           Ø25         2.1         1.0         27         40         1.0           Ø26         2.0         1.0         29         42         1.0           Ø30         1.8         1.0         32         50         1.0           Ø32         1.6         1.0         36         54         1.0           Ø33         1.5         1.0         38         56         66         1.0           Ø40         1.2         1.0         48         70         1.0         1.0           Ø50         0.9         1.0         64         90         1.0         1.0           Ø63         0.5         1.0         115         116         1.0         1.0	Ø18	3.4	1.0	17	26	36	
Ø21         2.3         1.0         25         32         1.0           Ø22         2.0         1.0         29         34         42         1.0           Ø25         2.1         1.0         27         40         1.0         1.0           Ø26         2.0         1.0         29         42         1.0           Ø30         1.8         1.0         32         50         1.0           Ø32         1.6         1.0         36         54         60         1.0           Ø33         1.5         1.0         38         56         66         1.0           Ø40         1.2         1.0         48         70         1.0           Ø50         0.9         1.0         64         90         1.0           Ø63         0.5         1.0         115         116         1.0	Ø20	3.0	1.0	19	30		1.0
Ø22         2.0         1.0         29         34         42         1.0           Ø25         2.1         1.0         27         40         1.0           Ø26         2.0         1.0         29         42         1.0           Ø30         1.8         1.0         32         50         1.0           Ø32         1.6         1.0         36         54         1.0           Ø33         1.5         1.0         38         56         66         1.0           Ø40         1.2         1.0         48         70         1.0           Ø50         0.9         1.0         64         90         1.0           Ø63         0.5         1.0         115         116         1.0	<b>320</b>	0.0	1.0	10	00	40	
Ø22         2.0         1.0         29         34         1.0           Ø25         2.1         1.0         27         40         1.0           Ø26         2.0         1.0         29         42         1.0           Ø30         1.8         1.0         32         50         1.0           Ø32         1.6         1.0         36         54         1.0           Ø33         1.5         1.0         38         56         1.0           Ø40         1.2         1.0         48         70         1.0           Ø40         1.2         1.0         48         70         1.0           Ø50         0.9         1.0         64         90         1.0           Ø63         0.5         1.0         115         116         1.0	Ø21	2.3	1.0	25	32	42	
Ø25         2.1         1.0         27         40         1.0           Ø26         2.0         1.0         29         42         1.0           Ø30         1.8         1.0         32         50         1.0           Ø32         1.6         1.0         36         54         1.0           Ø33         1.5         1.0         38         56         1.0           Ø40         1.2         1.0         48         70         1.0           Ø50         0.9         1.0         64         90         1.0           Ø63         0.5         1.0         115         116         1.0	Ø22	2.0	1.0	29	34		1.0
Ø26         2.0         1.0         29         42         1.0           Ø30         1.8         1.0         32         50         1.0           Ø32         1.6         1.0         36         54         1.0           Ø33         1.5         1.0         38         56         1.0           Ø40         1.2         1.0         48         70         1.0           Ø50         0.9         1.0         64         90         1.0           Ø63         0.5         1.0         115         116         1.0		2.0	1.0	20	40	44	1.0
Ø26         2.0         1.0         29         42         1.0           Ø30         1.8         1.0         32         50         1.0           Ø32         1.6         1.0         36         54         1.0           Ø33         1.5         1.0         38         66         1.0           Ø40         1.2         1.0         48         70         1.0           Ø50         0.9         1.0         64         90         1.0           Ø63         0.5         1.0         115         116         100         1.0           Ø64         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0	Ø25	2.1	1.0	27	40	50	
Ø30         1.8         1.0         32         50         1.0           Ø32         1.6         1.0         36         54         1.0           Ø33         1.5         1.0         38         56         1.0           Ø40         1.2         1.0         48         70         1.0           Ø50         0.9         1.0         64         90         1.0           Ø63         0.5         1.0         115         116         1.0           1.0         1.0         1.0         1.0         1.0	Ø26	2.0	1.0	20	42		1.0
Ø32         1.6         1.0         36         54         60         1.0           Ø33         1.5         1.0         38         56         1.0           Ø40         1.2         1.0         48         70         1.0           Ø50         0.9         1.0         64         90         1.0           Ø63         0.5         1.0         115         116         1.0           1.0         1.0         1.0         1.0           1.0         1.0         1.0         1.0	920	2.0	1.0	23		52	
Ø32         1.6         1.0         36         54         1.0           Ø33         1.5         1.0         38         56         66         1.0           Ø40         1.2         1.0         48         70         1.0         1.0           Ø50         0.9         1.0         64         90         1.0         1.0           Ø63         0.5         1.0         115         116         1.0         1.0	Ø30	1.8	1.0	32	50	60	
Ø33         1.5         1.0         38         56         1.0           Ø40         1.2         1.0         48         70         1.0           Ø50         0.9         1.0         64         90         1.0           Ø50         0.5         1.0         115         116         1.0           Ø63         0.5         1.0         115         126         1.0	@32	1.6	1.0	36	54		1.0
Ø40         1.2         1.0         48         70         1.0           Ø50         0.9         1.0         64         90         1.0           Ø63         0.5         1.0         115         116         1.0           1.0         1.0         1.0         1.0         1.0	90Z	1.0	1.0	00		64	
Ø40         1.2         1.0         48         70         1.0           Ø50         0.9         1.0         64         90         1.0           Ø63         0.5         1.0         115         116         1.0           100         1.0         1.0         1.0         1.0	Ø33	1.5	1.0	38	56	66	
Ø50         0.9         1.0         64         90         1.0           Ø63         0.5         1.0         115         116         1.0           116         1.0         1.0         1.0         1.0	040	1.0	1.0	40	70		1.0
Ø63     0.5     1.0     64     100     1.0       115     116     1.0       126     1.0	<i>9</i> 40	1.2	1.0	40		80	
<b>Ø63</b> 0.5 1.0 115 116 1.0 1.0	Ø50	0.9	1.0	64	90	100	
0.5 1.0 115 126 1.0	O(C)	0.5	1.0	115	116	100	
	<u>003</u>	0.5	1.0	115		126	1.0
Ø80 0.4 1.0 143 150 1.0 1.0	Ø80	0.4	1.0	143	150	160	1.0


### **APKT 1204R-HF**


Диа. фрезы (D ₁ )	Вр	езание под угл	ОМ	Спиральное врезание			
диа. фрезы (D1)	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.	
Ø16	3.8	1.2	18	21	00	0.8	
				24	32	1.2	
Ø18	4.0	1.2	17		36	1.2	
Ø20	4.0	1.2	17	27	40	1.2 1.2	
<b>CO4</b>	0.5	4.0	00	29	70	1.2	
Ø21	3.5	1.2	20		42	1.2	
Ø25	2.5	1.2	27	37	50	1.2	
				39	50	1.2	
Ø26	2.3	1.2	30		52	1.2	
Ø32	1.7	1.2	40	51		1.2	
202	1.7	1.2	70	50	64	1.2	
Ø33	1.7	1.2	40	53	66	1.2	
Ø40	4.5	1.2	46	67	- 00	1.2	
<i>1</i> 040	1.5	1.2	40		80	1.2	
Ø50	1.1	1.2	63	86	100	1.2	
				112	100	1.2	
Ø63	1.0	1.2	69	112	126	1.2	
Ø80	0.8	1.2	86	146		1.2	
2000	0.0	1.2	00		160	1.2	


# Режимы резания: углы врезания







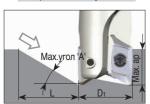


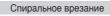


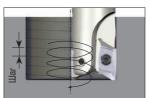

#### Врезание торцом



#### XECT16 0.4R-1.6R


Tue denous (D.)	Вре	зание под уг	лом	Спир	ральное врез	ание	Врезание торцом
Диа. фрезы (D ₁ )	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.	Max. ap
Ø25	22.0	16.0	40	29.1		4.4	4.2
<i>D</i> 23	22.0	10.0	70		50	13.6	4.2
Ø32	16.5	16.0	54	43.1		8.8	4
2002	10.5	10.0	54		64	13.6	4
Ø40	11.5	16.0	79	59.1		10.4	4
2040	11.5	10.0	7.5		80	13.6	4
Ø50	9.5	16.0	96	79.1		13.0	4
200	9.5	10.0	30		100	13.6	4
Ø63	7.0	16.0	130	105.1		13.6	4
2003	7.0	10.0	130		126	13.6	4
Ø80	5.0	16.0	183	139.1		13.6	4
2000	5.0	10.0	100		160	13.6	4
Ø100	3.5	16.0	262	179.1		12.9	4
20100	0.0	10.0	202		200	13.6	4
Ø125	2.5	16.0	367	229.1		12.1	4
20120	2.5	10.0	507		250	13.6	4


#### **XECT16 2.0R**


Tue denocus (Ds)	Вре	зание под уг	ЛОМ	Спир	ральное врез	ание	Врезание торцом
Диа. фрезы (D ₁ )	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.	Max. ap
Ø25	22.0	15.5	38	29.1		4.4	3.7
W23	22.0	13.3	30		50	13.2	3.7
Ø32	16.0	15.5	54	43.1		8.5	3.5
202	10.0	10.0	54		64	13.2	3.5
Ø40	11.0	15.5	80	59.1		9.9	3.5
940	11.0	13.3	00		80	13.2	3.5
Ø50	9.0	15.5	98	79.1		12.3	3.5
950	9.0	13.3	30		100	13.2	3.5
Ø63	6.5	15.5	136	105.1		12.8	3.5
200	0.5	13.3	130		126	13.2	3.5
Ø80	4.5	15.5	197	139.1		12.4	3.5
2000	4.5	15.5	197		160	13.2	3.5
Ø100	3.0	15.5	296	179.1		11.1	3.5
0100	3.0	15.5	290		200	13.2	3.5
Ø125	2.0	15.5	444	229.1		9.7	3.5
W123	2.0	13.5	444		250	11.7	3.5



Врезание под углом







Врезание торцом



#### XECT16 3.0R-3.2R

Due droom (D.)	Вре	зание под уг.	ЛОМ	Спир	ральное врез	ание	Врезание торцом
Диа. фрезы (D ₁ )	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.	Max. ap
Ø25	21.0	14.5	38	29.1		4.2	2.5
D23	21.0	17.5	00		50	12.3	2.5
Ø32	15.0	14.5	54	43.1		7.9	3
202	10.0	14.0	0-1		64	12.3	3
Ø40	10.0	14.5	82	59.1		9.0	3
1040	10.0	14.5	02		80	12.3	3
Ø50	8.0	14.5	103	79.1		10.9	3
<b>100</b>	0.0	14.5	100		100	12.3	3
Ø63	6.0	14.5	138	105.1		11.8	3
200	0.0	14.5	100		126	12.3	3
Ø80	4.0	14.5	207	139.1		11.0	3
2000	4.0	14.5	201		160	12.3	3
Ø100	2.5	14.5	332	179.1		9.2	3
D 100	2.5	14.5	002		200	11.7	3
Ø125	1.5	14.5	554	229.1		7.3	3
D123	1.5	14.5	554		250	8.7	3

#### XECT16 4.0R-5.0R

Диа. фрезы (D ₁ )	Вре	зание под уг	лом	Спир	ральное врез	ание	Врезание торцом
диа. фрезы (D1)	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.	Max. ap
Ø25	18.5	14.5	43	29.1		3.7	2.3
220	10.0	17.0	10		50	12.3	2.3
Ø32	13.5	14.5	60	43.1		7.1	2.5
202	10.0	17.0	00		64	12.3	2.5
Ø40	8.5	14.5	97	59.1		7.6	2.5
1040	0.5	14.5	31		80	12.3	2.5
Ø50	7.0	14.5	118	79.1		9.5	2.5
<b>100</b>	7.0	14.5	110		100	12.3	2.5
Ø63	5.5	14.5	151	105.1		10.8	2.5
200	3.3	14.5	131		126	12.3	2.5
Ø80	3.5	14.5	237	139.1		9.7	2.5
<b>1000</b>	3.5	14.5	231		160	12.3	2.5
Ø100	2.5	14.5	332	179.1		9.2	2.5
× 100	2.5	14.5	552		200	11.7	2.5
Ø125	1.5	14.5	554	229.1		7.3	2.5
Ø123	1.5	14.5	554		250	8.7	2.5

# Режимы резания: углы врезания







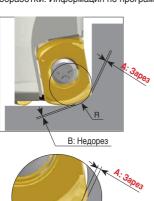
#### Спиральное врезание



#### BI MD 06

BLMP 06						
Tuo dinagri (D.)	Вр	езание под угл	ОМ	Спі	иральное вреза	ние
Диа. фрезы (D ₁ )	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø16	3.0	0.7	13	23		0.7
210	0.0	0.7	10		32	0.7
Ø17	2.7	0.7	15	25	34	0.7 0.7
				27	34	0.7
Ø18	2.5	0.7	16		36	0.7
Ø20	1.5	1.0	38	31		0.8
W20	1.5	1.0	30		40	1.0
Ø21	1.5	1.0	38	33		0.8
~			00		42	1.0
Ø25	1.4	1.0	41	41	50	1.0 1.0
				43	30	1.0
Ø26	1.3	1.0	44	40	52	1.0
Ø30	1.1	1.0	52	51		1.0
2000	1.1	1.0	32		60	1.0
Ø32	1.0	1.0	57	55		1.0
	1.0	1.0	0,		64	1.0
Ø33	1.0	1.0	57	57	00	1.0
				71	66	1.0 1.0
Ø40	0.9	1.0	64	/ 1	80	1.0
~=-	2.2	4.0	00	91	30	1.0
Ø50	0.6	1.0	96		100	1.0
Ø63	0.5	1.0	115	117		1.0
2003	0.5	1.0	113	·	126	1.0



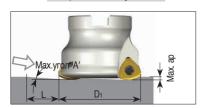

#### BLMP 09

Диа. фрезы (D ₁ )	Вр	езание под угл	ОМ	Спі	иральное вреза	ние
диа. фрезы (D1)	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø25	2.2	1.5	39	42		1.5
~		1.0	00		50	1.5
Ø26	2.2	1.5	39	44	50	1.5
					52	1.5
Ø30	2.0	1.5	43	52	60	1.5 1.5
~~~	0.0	4.5	40	56	- 00	1.5
Ø32	2.0	1.5	43		64	1.5
Ø33	2.0	1.5	43	58		1.5
<i>1</i> 033	2.0	1.5	43		66	1.5
Ø40	1.5	1.5	57	72		1.5
D-10	1.0	1.0	07		80	1.5
Ø42	1.5	1.5	57	76		1.5
~			0.		84	1.5
Ø50	1.0	1.5	86	92	100	1.5 1.5
				96	100	1.5
Ø52	1.0	1.5	86	90	104	1.5
				118	104	1.5
Ø63	0.9	1.5	96	110	126	1.5
Ø66	0.9	1.5	96	124		1.5
Ø00	0.9	1.5	90		132	1.5
Ø80	0.8	1.5	107	152		1.5
200	0.0	1.0	107		160	1.5
Ø100	0.7	1.5	123	192	200	1.5
	L		.20		200	1.5

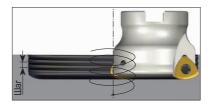
Технические данные для программированию

При написании УП выбирайте программируемый радиус "R" для каждого габарита пластины. При этом толщина необработанного материала будет составлять величину около значения "B" вдоль радиуса. При написании УП с выбранным "R" область зареза будет составлять "A"

Чтобы не допустить зарез детали добавьте в стратегии дополнительный припуск "А" для черновой обработки. Информация по программируемым "R" в таблице ниже.

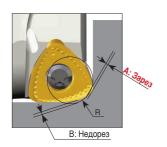

В: Недорез

	Программируемый R	Зарез А	В Недорез
	2.0	0	0.42
BLMP 06	2.5	0.12	0.26
	3.0	0.29	0.17
	2.5	0	0.61
	3.0	0.09	0.45
BLMP 09	3.5	0.24	0.30
	4.0	0.41	0.17
	3.0	0.36	0.04


: Рекомендованный программируемый 'R'

Врезание под углом

Спиральное врезание

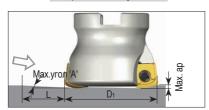

BLMP 12

DEIVII 12						
Tue denocut (D.)	Вр	езание под угл	ОМ	Спі	иральное вреза	ние
Диа. фрезы (D ₁)	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø32	2.0	2.0	57	41.6	0.4	0.9
	-		-	43.6	64	2.0
Ø33	2.0	2.0	57	43.0	66	2.0
Ø35	1.8	2.0	64	47.6		1.1
	1.0	2.0	0+		70	2.0
Ø40	1.5	2.0	76	57.6		1.2
~		2.0			80	2.0
Ø42	1.3	2.0	88	61.6		1.2
~ :-		2.0		77.0	84	2.0
Ø50	1.1	2.0	104	77.6	100	2.0
				81.6	100	1.4
Ø52	1.0	2.0	115	01.0	104	2.0
Ø63	0.8	2.0	143	103.6		1.5
2003	0.0	2.0	140		126	2.0
Ø66	0.7	2.0	164	109.6		1.4
2000	0.7	2.0	104		132	2.0
Ø80	0.5	2.0	229	137.6		1.3
200	0.0	2.0	220		160	1.9
Ø100	0.4	2.0	287	177.6		1.4
2100	0.1	2.0	201		200	1.9
Ø125	0.4	2.0	382	227.6	250	1.4
						1./

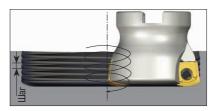
Технические данные для программированию

При написании УП выбирайте программируемый радиус "R" для каждого габарита пластины. При этом толщина необработанного материала будет составлять величину около значения "B" вдоль радиуса. При написании УП с выбранным "R" область зареза будет составлять "A"

Чтобы не допустить зарез детали добавьте в стратегии дополнительный припуск "А" для черновой обработки. Информация по программируемым "R" в таблице ниже.



	Программируемый R	Зарез А	В Недорез
	3.0	0	1.15
	3.5	0	1.00
BLMP 12	4.0	0.03	0.84
	4.5	0.14	0.70
	5.0	0.29	0.57

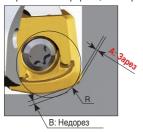

: Рекомендованный программируемый 'R'

Врезание под углом

Спиральное врезание

XDMX 08

Диа. фрезы (D ₁)	Врезание под углом			Спиральное врезание		
	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø20	1.5	1.0	38	26	40	0.4
				36	40	0.5
Ø25	0.9	1.0	64	00	50	1.0
Ø32	0.5	1.0	115	50		0.4
~~-	0.0				64	0.7
Ø40	0.4	1.0	143	66		0.5
					80	0.7
Ø50	0.3	1.0	191	86		0.5
					100	0.7


XDMX 13

Диа. фрезы (D ₁)	Врезание под углом			Спиральное врезание		
	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø32	2.5	2.0	46	40	0.4	0.9
~	4.7	0.0	07	56	64	1.0
Ø40	1.7	2.0	67		80	1.9
Ø50	1.3	2.0	88	76	100	1.6
~~~				102	100	1.9 1.5
Ø63	0.8	2.0	143		126	2.3
Ø80	0.5	2.0	229	136	100	1.3
				176	160	1.9
Ø100	0.4	2.0	287		200	1.9
Ø125	0.2	2.0	573	226	050	0.9
					250	1.2

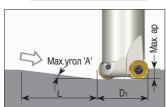
#### Технические данные для программированию

При написании УП выбирайте программируемый радиус "Я" для каждого габарита пластины. При этом толщина необработанного материала будет составлять величину около значения "В" вдоль радиуса. При написании УП с выбранным "R" область зареза будет составлять "A"

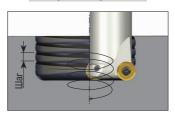
Чтобы не допустить зарез детали добавьте в стратегии дополнительный припуск "А" для черновой обработки. Информация по программируемым "R" в таблице ниже.



	Программируемый R	Зарез А	В Недорез			
	2.8	0	0.49			
XDMX 08	3.0	0.01	0.44			
VDIMIY 00	3.5	0.14	0.31			
	4.0	0.32	0.19			
	3.0	0	0.87			
	3.5	0.01	0.72			
XDMX 13	4.0	0.12	0.58			
VDIMIY 19	4.5	0.27	0.45			
	5.0	0.45	0.33			
	6.0	0.83	0.14			
. D						


Рекомендованный программируемый 'R'




# Режимы резания: углы врезания







### Спиральное врезание



### RNMU 1004S-M ,RNMU 1004-ML: 8 кромок

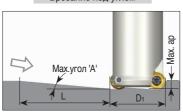
11111110 10010 11	. ,	=				
Tue denou (D.)	Вр	езание под угл	ОМ	Спиральное врезание		
Диа. фрезы (D ₁ )	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø25	1.1	5.0	261	33		0.4
,O23	1.1	1.1	201		50	1.3
Ø26	1.1	5.0	261	35		0.5
020	1.1	3.0	201		52	1.3
Ø32	0.9	5.0	318	47		0.6
W32	0.9	3.0 310	310		64	1.3
Ø33	0.9	5.0	318	49		0.7
<b>2000</b>	0.9	5.0	310		66	1.4
Ø40	0.9	5.0	318	63		1.0
940	0.9	5.0	310		80	1.7
Ø42	0.9	5.0	318	67		1.0
W4Z	0.9	5.0	310		84	1.8
Ø50	0.7	5.0	409	83		1.1
200	0.7	5.0	409		100	1.6
Ø52	0.8	5.0	358	87		1.3
W3Z	0.0	5.0	336		104	1.9

### RNMU 1205S-M ,RNMU 1205-ML: 8 кромок

HIND 12035-M , HIND 1205-ML. O ROMOR								
Tue donos (D.)	Вр	езание под угл	ОМ	Спиральное врезание				
Диа. фрезы (D ₁ )	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.		
Ø32	1.4	6.0	246	42		0.7		
202	17	0.0	240		64	2.1		
Ø33	1.4	6.0	246	44		0.7		
900	1.4	0.0	240		66	2.2		
Ø40	1.3	6.0	265	58		1.1		
X)40	1.0	0.0			80	2.4		
Ø50	1.0	6.0	344	78		1.3		
950	1.0	0.0	044		100	2.3		
Ø52	1.0	6.0	344	82		1.4		
Ø3Z	1.0	0.0	044		104	2.4		
Ø63	1.0	6.0	344	104		1.9		
2003	1.0	0.0	044		126	2.9		
Ø66	1.0	6.0	344	110		2.0		
2000	1.0	0.0	344		132	3.1		
Ø80	0.9	6.0	382	138		2.4		
2000	0.9	0.0	302		160	3.4		
Ø100	0.7	0.7 6.0	491	178		2.5		
2000	0.7	0.0	431		200	3.3		

# Режимы резания: углы врезания




RNMU 1606S-M: 8 кромок

Dua diposi i (Da)	Вр	езание под угл	ОМ	Спі	иральное вреза	ние	
Диа. фрезы (D ₁ )	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.	
Ø40	1.4	8.0	328	52		0.8	
2.10		0.0	020		80	2.6	
Ø42	1.4	8.0	328	56		0.9	
W4Z	1.4	0.0	320		84	2.7	
Ø50	1.3	8.0	353	72		1.3	
Ø30	1.3	0.0			100	3.0	
Ø52	1	8.0	459	76		1.1	
<b>1032</b>	ı ı	0.0	433		104	2.4	
Ø63	1	8.0	459	98		1.6	
900	'	0.0	433		126	2.9	
Ø66	1	8.0	459	104		1.8	
2000	ı ı	0.0	409		132	3.1	
Ø80	1	8.0	459	132		2.4	
900	'	0.0	455		160	3.7	
Ø100	0.9	8.0	510	172		3.0	
20100	0.9	0.0	510		200	4.2	
Ø125	0.9	8.0	510	222		4.1	
Ø125	0.9	0.0	310		250	5.2	

# CHASEMOLD

# Режимы резания: углы врезания

### Врезание под углом



### Спиральное врезание



### RDMX-05

Диа. фрезы (D ₁ )	Вр	езание под угл	ОМ	Спиральное врезание		
	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø8	7	2.5	20	8.5		0.2
,00	,	2.5	20		16	2.1
Ø10	14	2.5	10	12		1.3
<i>1</i> 010	14	2.5	10		20	2.1
Ø12	0 05 16	16	16		1.7	
שוע	9	2.5	10		24	2.1

### RDMX-07

Диа. фрезы (D ₁ )	Вр	езание под угл	ОМ	Спиральное врезание		
диа. фрезы (D1)	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø15	17	3.5	11	18		2.4
~		0.0	• • • • • • • • • • • • • • • • • • • •		30	3.0
Ø16	15	3.5	13	20		2.9
910	10	0.0	10		32	3.0
Ø17	14.5	3.5	14	22		1.6
110	14.5	3.3				3.4
Ø20	14	3.5	14		34	3.0
<u>1020</u>	14	3.5	14	28		3.0
Ø25	8	3.5	25		40	3.0
025	0	3.5	25	38		3.0
Ø30	5	3.5	40		50	3.0
<b>1930</b>	၂ ၁	ა.5	40	48		3.0
Ø32	5	0.5	40		60	3.0
W3Z	<u> </u>	3.5	40	52		3.0

### RXM(H)X-10

Tue donosi (Da)	Вр	Врезание под углом			Спиральное врезание		
Диа. фрезы (D ₁ )	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.	
Ø20	20	5.0	14	22	40	1.9	
				32	40	4.3 5.0	
Ø25	15	5.0	19	- OL	50	4.3	
Ø32	12	5.0	24	46		1.6	
202		0.0			64	4.3	
Ø42	8	5.0	36	66		4.3	
NTL.	0	5.0	00		84	4.3	
Ø50	6.5	5.0	44	82		4.3	
<b>100</b>	0.5	5.0	44		100	4.3	
Ø52	6	F 0	48	86		4.3	
W3Z	0	5.0			104	4.3	

# Режимы резания: углы врезания



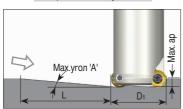
### RXM(H)X-12

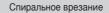
Диа. фрезы (D ₁ )	Вр	езание под угл	ОМ	Спиральное врезание		
диа. фрезы (D1)	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø25	20	6.0	16	28		2.9
W23	20	0.0	10		50	5.1
Ø32	15	6.0	22	42	0.4	5.1
				40	64	5.1
Ø35	8	6.0	43	48	70	4.9
				58	70	5.1 5.1
Ø40	15	6.0	22	30	80	5.1
~				62	- 00	5.1
Ø42	7.5	6.0	46	- OL	84	5.1
Ø50	7.5	6.0	46	78		5.1
<i>1</i> 050	7.5	0.0	40		100	5.1
Ø52	6	6.0	57	82		5.1
202	0	0.0	01		104	5.1
Ø63	5	6.0	69	104	100	5.1
				440	126	5.1
Ø66	5	6.0	69	110	132	5.1 5.1
				138	102	5.1
Ø80	4	6.0	86	100	160	5.1
C400	_	0.0	470	178		5.1
Ø100	2	2 6.0	172		200	5.1
Ø125	2	6.0	172	228		5.1
Ø123		0.0	1/2		250	5.1

### RXMX-16

117(11))( 10						
Tue denou (D.)	Bp	езание под угл	ОМ	Спі	иральное вреза	ние
Диа. фрезы (D ₁ )	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø32	20	8.0	22	34		1.9
202		0.0			64	6.8
Ø40	15	8.0	30	50		7.1
240	10	0.0	00		80	6.8
Ø42	14	8.0	32	54		8.0
W4Z	14	0.0			84	6.8
Ø50	13	8.0	35	70		6.8
<b>1000</b>	13	0.0	33		100	6.8
Ø52	10	8.0	45	74		6.8
<b>1032</b>	10	0.0	45		104	6.8
Ø80	6	8.0	76	130		6.8
2000	0	0.0	70		160	6.8
Ø100	4	8.0	114	170		6.8
20100	4	0.0	114		200	6.8
Ø125	3.5	8.0	131	220		6.8
X 123	0.0	0.0	131		250	6.8

### RXMX-20


Врезание под углом			Спиральное врезание		
Иах.угол (А°) │	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
16	10.0	35	62		9.2
	10.0			100	8.5
11.5	10.0	10.0	88		8.5
11.5	10.0	70		126	8.5
	10.0	60	122		8.5
9	10.0	00		160	8.5
7.5	10.0	76	162		8.5
7.5	10.0	/6		200	8.5
- F - F	10.0	104	212		8.5
5.5	10.0	104		250	8.5
4	40.0	4.40	282		8.5
4   10.0	143		320	8.5	
/		Мах. угол (A°)     Мах. ар (mm)       16     10.0       11.5     10.0       9     10.0       7.5     10.0       5.5     10.0	Мах. угол (A°)         Мах. ар (mm)         Міл. длина (L)           16         10.0         35           11.5         10.0         49           9         10.0         63           7.5         10.0         76           5.5         10.0         104	Мах. угол (A°)         Мах. ар (mm)         Міп. длина (L)         Міп. диам.         62           11.5         10.0         49         88           9         10.0         63         122           7.5         10.0         76         162           5.5         10.0         104         212	Iax.yroл (A°)         Max. ap (mm)         Min. длина (L)         Min. диам.         Max. диам.           16         10.0         35         100           11.5         10.0         49         88         126           9         10.0         63         122         160           7.5         10.0         76         162         200           5.5         10.0         104         212         250




# Режимы резания: углы врезания











### RYM(H)X-08

Диа. фрезы (D ₁ )	Вр	езание под угл	ОМ	Спі	иральное вреза	ние
диа. фрезы (D1)	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø16	2.5	4.0	92	18	32	0.2 1.9
Ø17	2.5	4.0	92	20	34	0.3
Ø18	2.5	4.0	92	22	36	0.5 2.1
Ø20	4.0	4.0	57	26	40	1.1
Ø21	4.0	4.0	57	28	42	1.3 3.4
Ø25	4.0	4.0	57	36	50	2.1 3.4
Ø26	4.0	4.0	57	38	52	2.2 3.4
Ø32	4.0	4.0	57	50	64	3.4 3.4
Ø40	7.0	4.0	33	66	80	3.4 3.4

### RYMX-10

Tue donor (D.)	Вр	езание под угл	ОМ	Спі	Спиральное врезание		
Диа. фрезы (D ₁ )	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.	
Ø20	4.5	5.0	64	22	40	0.4 4.2	
Ø21	4.5	5.0	64	24		0.6	
021	4.5	5.0	04		42	4.4	
Ø25	5.0	5.0	57	32	50	1.6 4.3	
Ø26	5.0	5.0	57	34		1.9	
520	0.0	0.0	07		52	4.3	
Ø32	5.0	5.0	57	46	64	3.3 4.3	
Ø35	5.0	5.0	57	52	01	4.0	
200	3.0	3.0	37		70	4.3	
Ø40	5.0	5.0	57	62		4.3	
,6 10				66	80	4.3	
Ø42	5.0	5.0	57	00	84	4.3	
O.E.O.	0.5	г о	4.4	82		4.3	
Ø50	6.5	5.0	44		100	4.3	
Ø52	6.0	5.0	48	86		4.3	
<b>502</b>	0.0	0.0	70		104	4.3	
Ø66	4.5	5.0	64	114	132	4.3	

### RYMX-12

Tue donos (D.)	Вр	езание под угл	ОМ	Спиральное врезание		
Диа. фрезы (D ₁ )	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.
Ø25	6.0	6.0	57	28		0.8
	0.0	0.0	0,	00	50	5.1
Ø26	6.0	6.0	57	30	52	1.1 5.1
G20	10.0	0.0	00	42	- 52	5.1
Ø32	12.0	6.0	28		64	5.1
Ø33	12.0	6.0	28	44	00	5.1
				48	66	5.1 5.1
Ø35	12.0	6.0	28	40	70	5.1
G40	10.0	0.0	0.4	58		5.1
Ø40	10.0	6.0	34		80	5.1
Ø42	12.0	6.0	28	62	0.4	5.1
				78	84	5.1 5.1
Ø50	9.0	6.0	38	70	100	5.1
ØE0.	0.0	0.0	40	82	100	5.1
Ø52	8.0	6.0	43		104	5.1
Ø55	8.0	6.0	43	88	440	5.1
				104	110	5.1 5.1
Ø63	7.0	6.0	49	104	126	5.1
Ø66	6.5	6.0	53	110	120	5.1
900	0.0	0.0	55		132	5.1
Ø80	4.5	6.0	76	138	400	5.1
				178	160	5.1 5.1
Ø100	3.5	6.0	98	1/0	200	5.1
Ø10E	0.5	6.0	107	228	230	5.1
Ø125	2.5	6.0	137		250	5.1

### RYMX-16

Tuo dinocui (Da)	Вр	езание под угл	ОМ	Спиральное врезание			
Диа. фрезы (D ₁ )	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.	
Ø32	8.0	8.0	57	34		0.7	
	0.0	0.0	01		64	6.8	
Ø40	9.5	8.0	48	50	80	4.5 6.8	
				54	00	5.1	
Ø42	9.0	8.0	51	J4	84	6.8	
Ø50	9.0	8.0	51	70		6.8	
<i>1</i> 050	9.0	0.0	31		100	6.8	
Ø52	9.0	8.0	51	74		6.8	
, D32	3.0	0.0	31		104	6.8	
Ø63	8.5	8.0	54	96		6.8	
	0.0	0.0	0.		126	6.8	
Ø66	8.5	8.0	54	102	100	6.8	
	0.0	0.0	٠.	100	132	6.8	
Ø80	6.0	8.0	76	130	400	6.8	
			_	470	160	6.8	
Ø100	5.0	8.0	91	170	200	6.8	
				220	200	6.8	
Ø125	3.5	8.0	131	220	250	6.8	
				290	230	6.8	
Ø160	3.5	8.0	131	230	320	6.8	


# Режимы резания: углы врезания

### CHASEMOLD

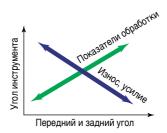
### RYMX-20

Tue donos (D.)	Врезание под углом			Спиральное врезание			
Диа. фрезы (D ₁ )	Мах.угол (A°)	Max. ap (mm)	Min. длина (L)	Min. диам.	Мах. диам.	Мах. шаг/об.	
Ø50	8.0	10.0	71	62		4.5	
200	0.0	10.0	71		100	8.5	
Ø63	12.5	10.0	45	88		8.5	
200	12.5	10.0	70		126	8.5	
Ø80	8.5	10.0	67	122		8.5	
200	0.5	10.0	07		160	8.5	
Ø100	6.5	10.0	88	162		8.5	
Ø100	0.5	10.0	00		200	8.5	
Ø125	4.5	10.0	127	212		8.5	
Ø123	4.5	10.0	121		250	8.5	
Ø160	4.0	10.0	143	282		8.5	
Ø100	4.0	10.0	140		320	8.5	
Ø200	2.5	10.0	229	362		8.5	
Ø200	2.0	10.0	229		400	8.5	
Ø250	2.4	10.0	239	462		8.5	
W230	2.4	10.0	239		500	8.5	

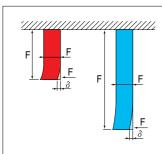




Общая информация	TF2
Фактический диаметр сферических монолитных фрез	TF8
Решение проблем	TF10


-Монолитные фрезы

### Выбор сплава монолитной фрезы


Обрабатываемый материал	Сплав монолитной фрезы
Закаленные стали (твердость<65 HRC)	TT5505
Предварительно закаленные стали, легированные и углеродистые стали(твердость <55 HRC) Нержавеющие стали, титановые сплавы, суперсплав	TT5515 / TT5525
Цветные металлы (сплавы на основе алюминия и меди)	TT9020, UF10N, UF10
Графит	TT6050

### Параметры переднего угла





### Влияние длины резания



Вылет инструмента должен быть минимальным. Жесткость может отличаться по длине фрезы или длине резания. Чем меньше вылет инструмента, тем выше жесткость и меньше отклонение инструмента.

$$\delta = \frac{P \cdot L^3}{3 \cdot E \cdot I}$$

Р: Сила резания

L : Вылет

Е: Модуль упругости

I : Момент инерции

### Применение различных типов монолитных фрез

Тип	Форма	Применение
Плоская без центрального отверстия		Для общего применения, включая обработку пазов, фрезерование по кромке, растачивание и плунжерное фрезерование
Плоская с центральным отверстием		Для общего применения, включая обработку пазов, фрезерование по кромке и растачивание
Плоская с радиусом при вершине		Для высокоскоростного фрезерования и обработки радиусов
Сферическая		Для контурного или профильного фрезерования

### Количество зубьев и площадь сечения

Количество режущих кромок	2	3	4	
Форма сечения				
Диаметр сердцевины	60%	60%	60%	
Площадь поперечного сечения	42мм ²	44mm ²	47mm ²	
Соотношение сечения	53.50%	56%	60%	

### ■ 2 зуба

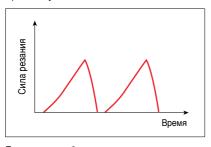
- Большая канавка для вывода стружки
- Простой отвод стружки
- Рекомендуется для обработки пазов
- Прочная конструкция для тяжелого фрезерования

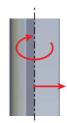
### ■ 3 зуба

- Благодаря большой площади сечения жесткость фрезы выше, чем у 2-зубой фрезы
- 3-зубые фрезы обеспечивают высокое качество обрабатываемой поверхности

### ■ 4 зуба

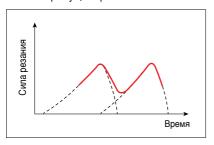
- Фрезы с 4 зубьями и более обеспечивают максимальную жесткость
- Обеспечивают высокое качество обрабатываемой поверхности
- Рекомендуется для профильного фрезерования, фрезерования по кромке и обработки неглубоких пазов


### Влияние угла наклона винтовой линии


Угол наклона винтовой линии	Крутящий момент	Изгибающее усилие	Шероховатость поверхности	Износ по передней поверхности	Износ по задней поверхности	Поломка
Низкий	<b>\</b>	<b>\</b>	<b>\</b>	<b>↑</b>	<b>↑</b>	<b>\</b>
Высокий	1	1	1	<b>\</b>	<b>\</b>	<b>↑</b>

### Угол наклона винтовой линии

Преимущество винтовой кромки: обработка на высоких подачах и большой глубине резания при низких усилиях подачи


■ Прямые зубья





- Большие колебания силы резания
- Прерывистая обработка

### ■ Винтовая режущая кромка





- Небольшие колебания силы резания



### ▶ Переточка зубьев монолитной фрезы

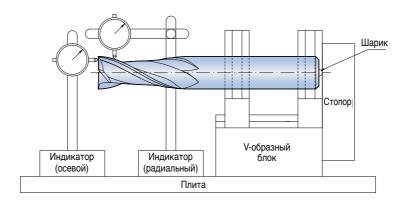
Стружечная канавка	2-й задний угол	1-й задний угол
•Использовать цилиндрический шлифовальный круг • Угол стружечной канавки: 30 - 45°	• Использовать чашечный шлифовальный круг  • Задний угол: 15 - 25°	<ul> <li>Использовать чашечный шлифовальный круг</li> <li>Задний угол: 6 - 15°</li> <li>Ширина: 0.5 - 2мм</li> </ul>

### Рекомендации для переточки

Применение	Диаметр монолитной фрезы (мм)	Макс. износ по задней поверхности		
Чистовая обработка	- Ø10 Ø11 - Ø30 Ø31 - Ø50	0.05 - 0.10 0.10 - 0.25 0.20 - 0.35		
Черновая обработка	- Ø10 Ø11 - Ø30 Ø31 - Ø50	0.08 - 0.15 0.15 - 0.35 0.30 - 0.45		

### Переточка бокового заднего угла

Вогнутый	Плоский	Выпуклый		
<ul> <li>Для точного наружного диаметра монолитной фрезы</li> <li>Использвать плоский шлифовальный круг</li> </ul>	Хорошая обрабатываемость     Необходимо наличие     2-го заднего угла     Для конусной или     сферической монолитной     фрезы	•Прочная режущая кромка и отличная шероховатость поверхности •Рекомендованный метод		


### Проверка биения фрезы и шероховатости поверхности

Монолитные фрезы работают лучше, когда режущая кромка каждого зуба вращается без биения по отношению к оси фрезы. Если каждый зуб вращается без биения, рабочая нагрузка распределяется равномерно, что обеспечивает оптимальные показатели обработки.

Радиальное и осевое биение необходимо проверять после каждой переточки.

Установить фрезу в V-образный блок и измерить биение периферийного и торцового зубьев, вращайте фрезу и проверяйте биение в нескольких положениях. Если фреза имеет центральное отверстие, его можно использовать для проверки фрезы между центрами. На каждой странице каталога приведены допуски и допустимое биение.

Используйте профилометр для измерения шероховатости поверхности - максимально допустимая шероховатость поверхности Rmax6.3. Неровная и грубая поверхность фрезы может отрицательно влиять на чистоту обрабатываемой поверхности и вызывать преждевременную поломку и скол режущей кромки.



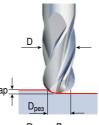
# ТЕХНИЧЕСКОЕ РУКОВОДСТВО

### ▶ Параметры для обработки монолитными фрезами

Параметр	Рекомендации
Жесткость станка	<ul> <li>Использовать станок с максимальной жесткостью</li> <li>При недостаточной жесткости станка подобрать соответствующие режимы резания</li> </ul>
Биение патрона и фрезы	<ul><li>Использовать жесткий и высококачественный зажимной патрон</li><li>Проверить и снизить до минимума биение фрезы</li></ul>
Крепление заготовки	• Жестко и надежно закрепить заготовку • При нежестком креплении заготовки или возникновении вибрации снизить режимы резания
СОЖ и вывод стружки	<ul> <li>• Максимально увеличить подачу СОЖ</li> <li>• Для тяжелых черновых операций подавать СОЖ поливом</li> <li>• При высокоскоростной обработке закаленных сталей без СОЖ обратитесь к руководству по эксплуатации</li> <li>• При высокоскоростной обработке использовать обдув воздухом</li> <li>• Обеспечить хороший вывод стружки из зоны резания</li> </ul>
Выбор монолитной фрезы	<ul> <li>Для правильного выбора фрезы руководствуйтесь подробной технической информацией в каталоге. Выбирайте фрезу в зависимости от назначения, типа обработки и обрабатываемого материала</li> <li>Более подробная информация на стр. 115</li> </ul>
Режимы резания	<ul> <li>Используйте рекомендованные режимы резания в каталоге</li> <li>Рекомендованные режимы резания основаны на оптимальных условиях обработки. Если жесткость станка или зажима заготовки недостаточные - режимы резания должны быть отрегулированы соответственно</li> </ul>
Вылет монолитной фрезы из торца шпинделя	• Используйте инструмент с минимальным вылетом • Если невозможно уменьшить вылет фрезы - измените режимы резания соответствующим образом

## ▶ Фактический диаметр сферических монолитных фрез

Диа	метр	Глубина резания (ар, мм)						
Радиус	Диаметр	0.01	0.02	0.03	0.04	0.05	0.08	0.1
0.1	0.2	0.087	0.12	0.143	0.16	0.173	0.196	0.2
0.2	0.4	0.125	0.174	0.211	0.24	0.265	0.32	0.35
0.3	0.6	0.154	0.215	0.262	0.299	0.332	0.41	0.45
0.4	0.8	0.178	0.25	0.304	0.349	0.387	0.48	0.53
0.5	1	0.199	0.28	0.341	0.392	0.436	0.54	0.6
1	2	0.282	0.398	0.486	0.56	0.624	0.78	0.87
1.5	3	0.346	0.488	0.597	0.688	0.768	0.97	1.08
2	4	0.399	0.564	0.69	0.796	0.889	1.12	1.25
2.5	5	0.447	0.631	0.722	0.891	0.995	1.25	1.4
3	6	0.489	0.692	0.846	0.977	1.091	1.38	1.54
4	8	0.565	0.799	0.978	1.129	1.261	1.59	1.78
5	10	0.632	0.894	1.094	1.262	1.411	1.78	1.99
6	12	0.693	0.979	1.198	1.383	1.546	1.95	2.18
7	14	0.748	1.058	1.295	1.495	1.67	2.11	2.36
8	16	0.8	1.131	1.384	1.598	1.786	2.26	2.52
9	18	0.848	1.199	1.468	1.695	1.895	2.39	2.68
10	20	0.894	1.264	1.548	1.787	1.997	2.52	2.82

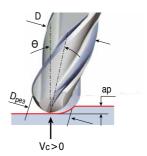

Диаметр Глубина реза			ания (ар, мі	м)					
Радиус	Диаметр	0.15	0.2	0.3	0.5	0.8	1	2	3
0.1	0.2								
0.2	0.4	0.39	0.4						
0.3	0.6	0.52	0.57	0.6					
0.4	0.8	0.62	0.69	0.77					
0.5	1	0.71	0.8	0.92	1				
1	2	1.05	1.2	1.43	1.73	1.96	2		
1.5	3	1.31	1.5	1.8	2.24	2.65	2.83		
2	4	1.52	1.74	2.11	2.65	3.2	3.46	4	
2.5	5	1.71	1.96	2.37	3	3.67	4	4.9	
3	6	1.87	2.15	2.62	3.32	4.08	4.47	5.66	6
4	8	2.17	2.5	3.04	3.87	4.8	5.29	6.93	7.75
5	10	2.43	2.8	3.41	4.36	5.43	6	8	9.17
6	12	2.67	3.07	3.75	4.8	5.99	6.63	8.94	10.39
7	14	2.88	3.32	4.05	5.2	6.5	7.21	9.8	11.49
8	16	3.08	3.56	4.34	5.57	6.97	7.75	10.58	12.49
9	18	3.27	3.77	4.61	5.92	7.42	8.25	11.31	13.42
10	20	3.45	3.98	4.86	6.24	7.84	8.72	12	14.28

### Формула расчета фактического диаметра

■ Плоская фреза



■ Сферическая фреза

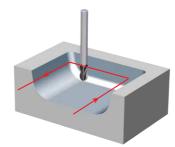



D_{рез} ≠ Диаметр



- Расчет фактического диаметра фрезы при врезании под углом
- Данная обработка эффективна при врезании на скорости близкой к нулю
- Улучшение стойкости и эвакуации стружки
- Отличная шероховатость поверхности

$$D_{pe3} = \\ Dx Sin[\Theta \pm COS^{-1}(D-2ap/D)]$$



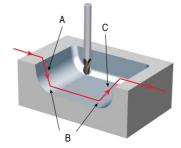

### Рекомендации по применению

■ Конутрное фрезерование

Рекомендованный метод

- Легко контролировать при непрерывном резании
- Способствует фрезерованию на высоких скоростях резания и подачах
- Повышенная стойоксть
- Улучшенная производительность
- Хорошая безопасность

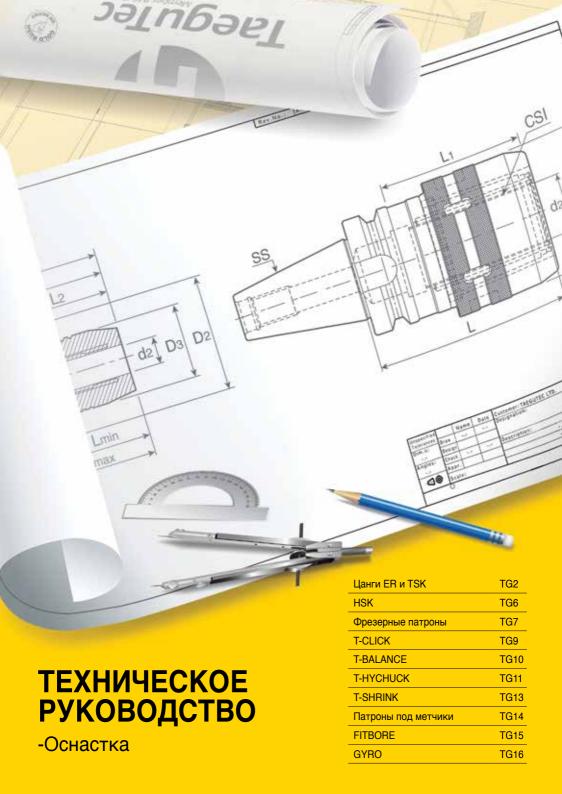



### ■ Профильное фрезерование

Традиционный метод

- Увеличенная режущая сила (особенно в точке В)
- Снижение подачи
- Низкая стойкость
- Высокая производительность

Точка А: Плохой отвод стружки


Точка В: Может вызвать скол и вибрацию Точка С: Увеличенное пятно контакта



# Решение проблем

Проблема	Причина	Решение
	- Острая кромка	- Притупить кромку или снять фаску
Скол	- Вибрация	- Снизить скорость вращения
	- Низкая скорость резания	- Увеличить скорость вращения - или использовать фрезу с большим углом наклона зубьев
	- Большой вылет	- Уменьшить вылет инструмента до минимального
	- Плохой зажим фрезы	- Проверить биение и заменить систему на более точную
	- Плохое закрепление заготовки	- Улучшить стабильность и крепление заготовки или снизить режимы резания
	- Высокая скорость резания	<ul> <li>Проверить параметры обработки и подобрать рекомендованные режимы резания</li> </ul>
	- Низкая подача	<ul> <li>Проверить параметры обработки и подобрать рекомендованные режимы резания</li> </ul>
	- Неправильно подобранный угол наклона винтовой линии фрезы	<ul> <li>Подобрать рекомендованную фрезу для обрабатываемого материала</li> </ul>
	- Встречное фрезерование	- Изменить фрезерование на попутное
Износ	- Твердые материалы заготовки	- Заменить фрезу в соответствии с рекомендациями или использовать фрезу с покрытием TIAIN
	- Плохой вывод стружки	<ul> <li>Использовать обдув воздухом или подачу СОЖ поливом для вывода стружки или использовать фрезу с меньшим количеством зубьев</li> </ul>
	<ul> <li>Материал с низкой теплопроводностью</li> <li>Слишком малый главный задний угол</li> </ul>	- Увеличить подачу - использовать фрезу с острой режущей кромкой - Использовать фрезу с большим задним углом
	- Чрезмерное выкрашивание или износ	- Переточить или заменить фрезу
	- Высокая подача	- Снизить подачу до рекомендованной
Поломка инструмента	- Чрезмерные усилия резания	- Проверить режимы резания - снизить/повысить обороты или подачу в соответствии с рекомендованными режимами
	- Чрезмерный вылет инструмента	- Уменьшить вылет до минимального
Поломка инструмента	- Вибрация	- Проверить рекомендации и откорректировать режимы резания
	- Нарост на режущей кромке	- Увеличить скорость резания - использовать фрезу с большим углом наклона зубьев или применить попутное фрезерование и подачу СОЖ поливом
	- Износ инструмента	- Переточить или заменить фрезу
	- Высокая подача - низкая скорость резания	- Снизить подачу и увеличить обороты в соответствии с рекомендованными режимами
Точность обработанной детали	- Режимы резания	- Начинать обработку на рекомендованных режимах резания
	- Высокая подача	- Снизить подачу для получения необходимой шероховатости поверхности и точности детали
	- Количество зубьев	- Использовать фрезу с большим количеством зубьев
	- Деформация инструмента	- Использовать фрезу большего диаметра и меньшей длиной режущей части, уменьшить вылет
	- Плохая жесткость	- Заменить оправку или отрегулировать режимы резания
	- Большой износ главного заднего угла	- Переточить фрезу
Заусенцы	- Неправильно подобранные режимы резания	- Откорректировать режимы резания
	- Неподходящий угол резания	- Применить правильный угол резания





### Герметичные цанги для подвода СОЖ через инструмент

### Применение

Цанги ER используются для операций, требующих подвод COЖ через инструмент, а также для стандартных инструментов таких как сверла, расточные державки, концевые фрезы, развертки, метчики и специальные инструменты.

Цанги ER обеспечивают точную эффективную подачу СОЖ.

Цанги применяются на высокоскоростных станках с подачей СОЖ через шпиндель/револьверную головку. Они обеспечивают максимальную производительность, высокие скорости резания, хорошую стойкость инструмента и высокое качество обработанной поверхности.

### ■ Особенности

- Высокоточные герметичные цанги со стягиваемостью 1.00мм и возможностью подвода СОЖ через инструмент
- Повышение эффективности обработки
- Увеличение стойкости инструмента
- Сильный зажим
- Зашита от загрязнений
- Быстрое удаление стружки с заготовки

### Преимущества

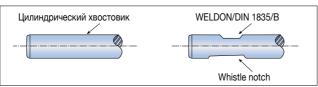
- Подача СОЖ под высоким давлением до 100 бар
- Устраняет препятствия для подачи СОЖ

### Примечания

- Для максимальной надежности и усилия зажима хвостовик режущего инструмента должен быть установлен в цангу на глубину минимум 2 диаметра хвостовика
- Сопло для подачи СОЖ цанги JET2 необходимо направить непосредственно на режущую кромку инструмента
- Подходит для всех стандартных хвостовиков

### ▶ Герметичные цанги для подвода СОЖ через инструмент ER coolit

■ 2 типа




Герметичная цанга ЈЕТ Для инструментов с цилиндрическим хвостовиком и отверстием для подвода СОЖ



Герметичная цанга JET 2
Два наклонных сопла.
СОЖ подается на режущую кромку
- Для инструментов с
цилиндрическим хвостовиком
(без отверстия для СОЖ)

### Хвостовики



### ► ER - зажимная гайка DIN6499

### Описание

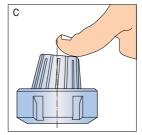
Гайка ER с подшипником скольжения - уникальная конструкция из двух частей, обеспечивающая радиальное и угловое самоцентрирование.

### ■ Особенности

- Уникальный подшипник скольжения из двух частей
- Радиальное и угловое перемещение для лучшей концентричности
- Усилие зажима на 50-100% выше, чем у стандартных гаек ER благодаря подшипнику скольжения
- Сбалансирована для работы на высоких оборотах
- Компактный дизайн: общие параметры и диапазон размеров как у стандартной гайки для герметичной цанги

### ■ Установка

Вставьте цангу в гайку до установки в цанговый патрон


■ Последовательность установки

Вставьте цангу под наклоном, попадая двумя выступающими зубцами (A) в канавку цанги (B). Разместить гайку и цангу на чистой горизонтальной поверхности.

Надавить пальцем на цангу сверху до ее защелкивания (С).







### ■ Важно

Никогда не вставляйте цангу параллельно кольцу экстрактора. Это может привести к поломке зубцов экстрактора. При разжиме гайки цанга свободно выводится из патрона при помощи зубцов экстрактора.

### ▶ ER - зажимная гайка DIN6499

- Последовательность разборки
  - Овместите выгравированный значок на серебристом кольце (D) с любым пазом (E) на гайке.
  - 2 Разместите гайку с цангой лицевой поверхностью вниз на чистой горизонтальной поверхности.
  - Вставьте отвертку вертикально между пазами гайки и цанги с обратной стороны выгравированного значка (D).
  - Наклоните отвертку наружу и надавите на цангу в противоположном направлении (F).





### Примечание:

Для максимальной эффективности поверхность зажимной гайки и конус цанги должны быть чистыми и смазанными перед использованием.

Рекомендованный момент затяжки для стандартных гаек ER и гаек с подшипником скольжения ER-Top.

Тип гайки	Кгхм
ER-11	5
ER-11M	3
ER-16	7
ER-16M	4
ER-20	12
ER-20M	8
ER-25	20
ER-32	22
ER-40	25
ER-50	35

### Важно:

Момент затяжки рассчитан для максимального диаметра каждой цанги. Момент необходимо постепенно уменьшать при использовании хвостовика меньшего размера.

### ▶ Цанговый патрон TSK

- Особенности и преимущества
- Отличная точность и хорошее усилие зажима благодаря небольшому углу конуса (цанга ER: 8°, цанга TSK: 4°)
- Тонкая конструкция для глубокой обработки и обработки впадин
- Подходит для высокоскоростной обработки
- Различные типы цанг TSK (обычные и с подводом СОЖ)
- Универсальная обработка сверлами и концевыми фрезами
- Применение
- Универсальная обработка сверлами и концевыми фрезами
- Высокоскоростная обработка пресс-форм и штампов
- Прецизионная обработка развертками и концевыми фрезами
- Как собрать цангу с гайкой

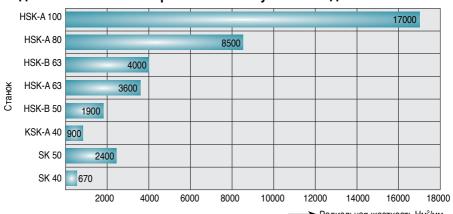


а. Приспособление для сборки (в комплекте)



b. Гайка

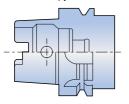



с. Цанга

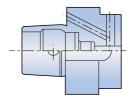


### ► HSK (DIN69893)

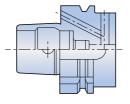
- Особенности
- Стандарт DIN
- Для высокоскоростной обработки
- Размеры: #32, 40, 50, 63, 100
- Для станков с автоматической и ручной сменой инструментов
- Двойной контакт с конусом и торцом шпинделя
- Высокая жесткость


### Радиальная жесткость различных конусов шпинделя

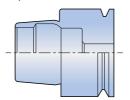



➤ Радиальная жесткость Нм²/мм

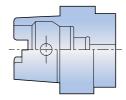
### ▶ Тип


■ Тип А: для автоматической смены инструментов

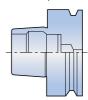



■ Тип D: с внутренним подводом СОЖ через торец




■ Тип В: с внутренним подводом СОЖ через торец

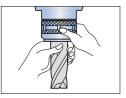


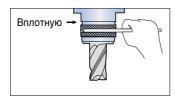

■ Тип Е: для высокоскоростной обработки



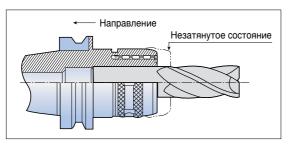
■ Тип С: ручной зажим



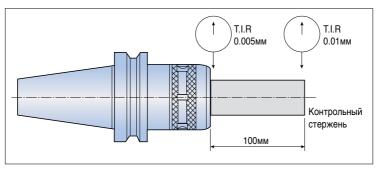

■ Тип F: для сверх высокоскоростной обработки




## Фрезерный патрон

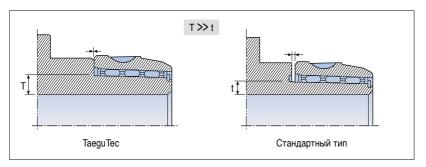

- Исключительное усилие зажима и простая эксплуатация
- Момент

Тип	Момент (кгс•м)
TMC 25	160
TMC 32	300
TMC 42	500






Затяните гайку вплотную к оправке (избегайте рывков)

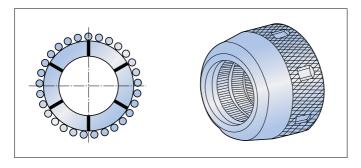



Улучшенная точность повышает стойкость инструментов
 Точность и низкое биение достигаются за счет прецизионной шлифовки и специального разрезного элемента для исключения повреждений и деформации инструментов.



### Повышенная жесткость

Повышенная жесткость и прочность корпуса благодаря увеличению толщины корпуса. Это достигается за счет специального разрезного элемента.




### ■ Отличная износостойкость

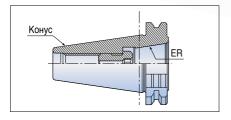
Отличная износостойкость благодаря распределению давления на поверхность ролика за счет увеличенного количества роликов в специальном элементе.

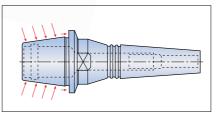
Тип	TaeguTec	A Co.	B Co.
Ø32	60	55	60
Ø42	75	72	72

<Количество роликов в одном ряду>



### Система быстрой смены инструмента

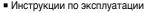

- DIN 69871 HSK BT MAS 403
- Преимущества системы T-CLICK
- Контакт по торцу и конусу
- Идеальное решение для высокоскоростной обработки
- Высокая точность, низкое биение
- Отличная жесткость
- Быстрый и легкий зажим
- Преимущества быстрой смены инструмента
- Быстрая смена инструмента: конический хвостовик и патрон соединяются за пол оборота
- Отсутствие теплового удара по конусу оправки
- Разнообразие диаметров и длин
- Не требуется использовать удлинитель
- Не нужны запасные части
- Доступны заготовки T-CLICK для изготовления оснастки покупателем
- Зажим монолитного твердосплавного инструмента термоусадкой












DIN 69871 HSK BT MAS 403

### Балансируемые цанговые патроны

- Высокоточный баланс с прямым снятием показаний благодаря высокоточным балансировочным кольцам
- Простой порядок балансировки на всех типах балансировочных машин
- Статическая и динамическая балансировка



Данный метод необходимо корректировать в соответствии с используемой балансировочной машиной.

- Ослабить 3 стопорных винта на опорном кольце (синего цвета). Совместить 2 балансировочных кольца (золотистого цвета) в положении "0" на опорном кольце. После настройки колец затянуть 3 стопорных винта.
- 2 Вставить цанговый патрон в шпиндель и затянуть его с помощью штревеля. Вставить режущий инструмент в цанговый патрон, настроить необходимый вылет и закрепить его.
- Ввести необходимые параметры в балансировочную машину: класс точности балансировки (G), частоту вращения (об/мин.) и т.д.
- 4 Протестировать цанговый патрон в сборе на балансировочной машине. Отметьте результаты для ориентации угла дисбаланса и г х мм значение дисбаланса.
- **6** Ослабить 3 стопорных винта на опорном кольце и выровнять 2 балансировочных кольца по замеренному значению дисбаланса. Вращать оба балансировочных кольца до угла дисбаланса на опорном кольце (или до лазерной отметки на балансировочной машине с лазерным индикатором). Затянуть стопорные винты.
- 6 Протестировать цанговый патрон в сборе еще раз и проверьте результаты.
- Примечание: Показания должны быть в пределах допуска.
- Если необходимый баланс достигнут на балансировочной машине инструмент готов для использования. Если баланс не в допуске необходимо выполнить одну из следующих операций:
- Первый способ
  - а) Если дисбаланс в пределах 0-3 г x мм и ± 20° от исходного угла. Тогда увеличьте начальное значение г х мм на балансировочных кольцах в соответствии с показаниями на машине, не меняя исходное угловое положение.
- Второй способ
- а) Если дисбаланс в пределах 0-3 г х мм, а угол примерно 180° от исходного угла, Тогда снизьте начальное значение г х мм на балансировочных кольцах в соответствии с показаниями на машине, не меняя исходное угловое положение.
- Третий способ
  - а) Если дисбаланс менее 1 г х мм, а угол 20-90° от исходного угла, Тогда вращайте оба балансировочных кольца примерно на 5° в указанном направлении.
- Четвертый способ
- а) На некоторых балансировочных машинах возможно отрегулировать дисбаланс, вращая точку максимума, указанную на балансировочных кольцах до необходимого углового положения.

Положение "0" к балансу G2.5 20K



Точка максимума



### Гидравлический патрон

- Особенности и преимущества
- Постоянное усилие захвата
- Отличная точность (биение до 5мкм)
- Удобная и безопасная смена инструмента с помощью крепежного винта
- Возможно использовать прямые цанги ТНС (обычные и с подводом СОЖ)
- Применение
- -Точная обработка
  - а) чистовое фрезерование, развертывание, чистовое растачивание
- Сверление: твердосплавные сверла небольших диаметров
  - а) Для алюминия или чугуна
- Эксплуатация
- Закрепление инструмента
  - а) Вставьте хвостовик инструмента между Lmax и Lmin (рис. 1) и поверните крепежный винт по часовой стрелке до упора.
- Извлечение инструмента
  - а) Для извлечения инструмента из гидравлического патрона поверните крепежный винт против часовой стрелки на 5-6 оборотов и достаньте инструмент.
- Примечания
  - а) Удалите смазку, СОЖ и грязь с внутреннего посадочного отверстия гидравлического патрона и хвостовика инструмента перед установкой.
- b) Обеспечьте минимальную длину зажима Lmin (см. рис. 1 и табл. 1)
- с) С цангой должны использоваться только инструменты с цилиндрическим хвостовиком с допуском h6 (табл. 2) и Ra min=0.3мкм (шлифованные) и хвостовиком Weldon
- d) Извлеките инструмент из гидравлического патрона, когда он не используется длительное время.
- е) Не поворачивайте крепежный винт до установки инструмента в гидравлический патрон.

### * Обратите внимание на информацию в таблицах ниже

### Рисунок 1. Конструкция оправки

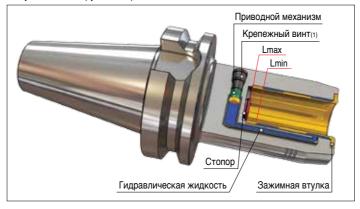



Таблица 1. Рекомендованная минимальная и максимальная длина (L) закрепления концевого инструмент

Внутренний посадочный диаметр Ø (мм)	Lmin (мм)	Lmax (мм)
6	27.5	37.5
8	27.5	37.5
10	32.5	42.5
12	37.5	47.5
14	37.5	47.5
16	42.5	52.5
20	42.5	52.5
25	51.0	61.0
32	55.0	65.0

Таблица 2. Диапазон допуска h6

Размер хвост	говика Ø (мм)	Диапазон допуска h6 (µm)
3		0
	3	-6
3	6	0
J	0	-8
6	10	0
0	10	-9
10	18	0
10	10	-11
18	30	0
10	30	-13
30	0	
30	50	-16

Таблица 3. Момент зажима

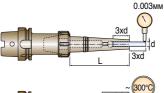
Внутренний посадочный диаметр Ø (мм)	Момент зажима (Н•м)
6	10
8	25
10	40
12	65
14	90
16	120
20	240
25	260
32	450

### ► Система термозажима T-SHRINK



### ► Система термозажима T-SHRINK

Цанговые патроны с термозажимом T-SHRINK ER - это расширение технических возможностей существующей популярной системы ER. Цанги T-SHRINK используют принцип термической усадки для жесткого зажима монолитных фрез. Данная новая система обеспечивает больший момент, точное биение и повторяемость. Цанги T-SHRINK с различными вылетами позволяют обрабатывать более глубокие канавки и выполнять фрезерование узких мест. ТаедиТес предлагает комплексную систему цанг T-SHRINK ER, включая уникальное устройство нагрева с переносной рукояткой. Устройство оснащено высокотехнологичной системой контроля температур для удобного использования на обрабатывающем центре или в инструментальном цехе.


### ■ Только для монолитных инструментов



L(мм)	Max. T.I.R
35	7 <i>µ</i> m
60	9 <b>,//m</b>
85	10, <b>//m</b>

- Особенности
- Тонкая конструкция для максимальной эффективности и доступа
- Гибкость: подходит для стандартных патронов ER
- Передача большого момента
- Жесткий зажим монолитного инструмента
- Высокая точность, низкое биение
- Отличная повторяемость
- Демпфирование вибраций
- Подходят цанги с отверстием для СОЖ ЈЕТ2
- Симметричный дизайн для высокоскоростной обработки
- Быстрая и легкая смена инструмента
- Уникальное устройство нагрева T-SHRINK с переносной рукояткой.



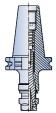


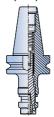









### ▶ Патроны для метчиков GTI


Описание
 Укороченные патроны под метчики для цанг ER



### Применение

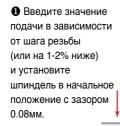
Осевые-плавающие/натяжные/компрессионные типы патронов для фрезерных станков с ЧПУ и токарных станков с реверсивным двигателем и жестким толчковым перемещением







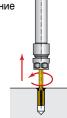
DIN 69871


BT MAS-403

Цилиндрический хвостовик

### ■ Особенности

- Компенсация отклонений подачи станка и шага резьбы
- Плавающий механизм компенсирует несоосность между метчиком и заготовкой
- Нарезание правой и левой резьбы
- Преимущества
- Эффективное закрепление метчика при помощи пружинящей цанги ER без использования приводного кулачка
- -Компактный дизайн для операций с минимальным зазором
- Конструкция для тяжелых условий обработки обеспечивает высокую точность нарезания резьбы
- Эксплуатация


Для нарезания резьбы в глухих и сквозных отверстиях



② Поверните шпиндель по часовой стрелке до достижения необходимой глубины.



 Остановите подачу и вращение и вернитесь в исходное положение





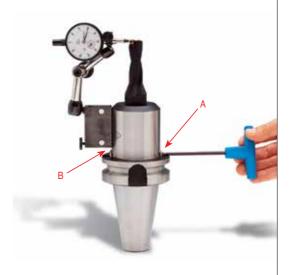
### Регулируемые вращающиеся патроны для сверл со сменными пластинами

■ Применение

Для применения на обрабатывающих центрах и сверлильных станках

- Особенности
- Диапазон регулирования диаметра от 0.30мм to +1.30мм
- Допуск на диаметр отверстия ±0.02мм
- Подача СОЖ через хвостовик или фланец (тип "В")
- Давление СОЖ до 70 бар

### Эксплуатация


Лучшие результаты достигаются при использовании установки для предварительной настройки или аналогичного приспособления.

- Настройте винт А или В.

Предварительная настройка должна быть на 0.3мм меньше требуемого диаметра

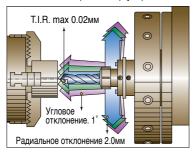
- Затянуть винты А и В
- Выполнить тестовое сверление, замерить размер отверстия и отрегулировать необходимый диаметр
- Окончательная настройка диаметра производится на станке с цифровым индикатором или устройством для настройки

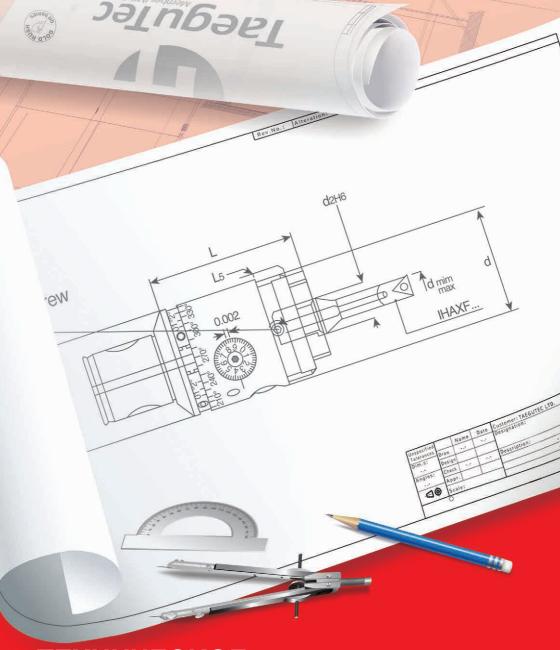




### ▶ GYRO - система радиального и углового выравнивания оправок

- Преимущества
- Легкая регулировка для устранения смещения осей патрона и револьверной головки (сверла и заготовки)
- Точный и эффективный зажим цангами ER и герметичными цангами ER Coolit Jet
- Быстрая регулировка на станке при помощи промежуточной втулки и кольцевого калибра
- Эксплуатация
   Инструкция по эксплуатации прилагается к каждому патрону
- Примечания
- Давление СОЖ должно быть от 10 до 80 бар для сверл небольшого диаметра : диапазон диаметров 3-20мм (обычного давления СОЖ 4 бар недостаточно)
- Необходимо обеспечить хорошую фильтрацию СОЖ, чтобы стружка не забивала отверстия для подачи СОЖ в сверле
- Для обеспечения максимальной эффективности системы GYRO необходимо проверить и настроить в соответствии с характеристиками станка люфт револьверной головки и оси суппорта


### ▶ GYRO - система радиального и углового выравнивания оправок


Регулируемые патроны для простого устранения радиальной и угловой несоосности

### Применение

GYRO - регулируемые патроны для решения проблем при сверлении, нарезании резьбы метчиком и развертывании на токарных станках с ЧПУ и токарно-револьверных станках. Специальный дизайн патронов позволяет легко устранить радиальную и угловую несоосность между патроном и револьверной головкой. Применение системы GYRO позволяет сократить время обработки благодаря возможности обработки отверстий за одну операцию и достижение допуска 0.01мм, исключая необходимость в последующем растачивании или развертывании.

- Существенное улучшение технологии сверления на токарных станках с ЧПУ
- Значительное увеличение производительности обработки при снижении затрат
- Особенности
- Обеспечивает высокоточное сверление с допуском 0.01мм, что является окончательной операцией обработки отверстий на токарных станках с ЧПУ
- Увеличивает стойкость инструментов в десятикратном размере, особенно при использовании инструментов из быстрорежущей стали, монолитных и напайных сверл, метчиков и разверток
- Позволяет увеличить скорость резания и подачу до 300%
- Подача СОЖ через центр устройства и отверстие для СОЖ в инструменте





Руководство по использованию

TH2

-MPT(Высокоточные Расточные Системы)

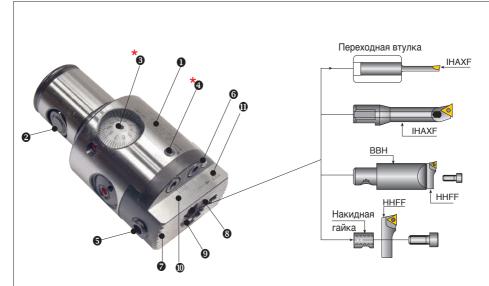
# Руководство по использованию

### ▶ Чистовая расточная головка 16-50 и ВНЕ

- Сборка
- Перед установкой расточной головки ВНF убедитесь, что установочный штифт не выступает за цилиндрический корпус головки
- Вставьте ВНГ в хвостовик
- Затяните установочный штифт ② поворотом по часовой стрелке с моментом затяжки, указанным ниже:

Рекомендованный момент	(N·m)
BHF MB16 - 16 x 34	2.0 - 2.5
BHF MB20 - 20 x 40	4.0 - 4.5
BHF MB25 - 25 x 50	6.5 - 7.5
BHF MB32 - 32 x 63	7.0 - 8.0
BHF MB40 - 40 x 80	16.0 - 18.0
BHF MB50 - 50 x 60	30.0 - 35.0

- Вставьте винт 6. Если он выступает, поверните винт до тех пор, пока он полностью не войдет в паз
- Разборка
- Для снятия ВНF с хвостовика ослабьте установочный штифт 2 поворотом против часовой стрелки
- Позиционирование
- Отпустите винт 4 перед регулировкой направляющей.
- Направляющая инструмента позволяет осуществлять перемещение на 4 мм поворотом лимба против часовой стрелки. при смене направления лимба необходимо компенсировать боковой зазор.
- После позиционирования зажмите направляющие винтом 4.
- Зажмите винт 4.
- Обслуживание


Раз в неделю:

- Смазка через масленку **3** маслом ISO UN G220. Время от времени:
- Очищайте и смазывайте конические и цилиндрические прилегающие поверхности.
- Смазывайте установочный штифт 2 антифрикционной смазкой.
- Очищайте и смазывайте направляющие перемещения инструмента.
- ВАЖНО:
- Державка инструмента должна прочно крепиться за направляющие.
- * При холостом ходе, если вы проскочили необходимое вам значение, поверните лимб в обратном направлении на один оборот и затем отрегулируйте нужный размер.



# Техническое руководство 📙

## Руководство по использованию



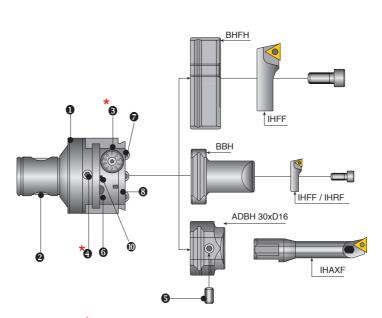
- О Корпус
- 2 Установочный штифт
- ***3** Градуированный лимб
- 🕭 Стопорный винт перемещения
- **6** Стопорный винт державки инструмента
- 6 Отверстие для СОЖ
- Направляющая
- Масленка
- 9 Инстр. отв. 63H7
- 🛈 Диапазон перемещения Не заходите за отметки
- П Направление положения режущей кромки

## Руководство по использованию

### ▶ Чистовая расточная головка ВНF 63-125

- Сборка
- Перед установкой расточной головки ВНF убедитесь, что установочный штифт не выступает за цилиндрический корпус головки
- Вставьте ВНГ в хвостовик
- Затяните установочный штифт ② поворотом по часовой стрелке с моментом затяжки, указанным ниже:

Рекомендованный момент	(N·m)
BHF MB50 - 63 x 87	30 - 35
BHF MB50 - 80 x 94	30 - 35
BHF MB63 - 63 x 87	80 - 90
BHF MB80 - 80 x 94	80 - 90
BHF MB80 - 125 x 94	80 - 90
BHF MB50 - 50 x 60	30.0 - 35.0


- Вставьте винт § . Если он выступает, поверните винт до тех пор, пока он полностью не войдет в паз
- Разборка
- Для снятия BHF с хвостовика ослабьте установочный штифт 2 поворотом против часовой стрелки
- Позиционирование
- Отпустите винт 4 перед регулировкой направляющей.
- Направляющая инструмента ₱ позволяет осуществлять перемещение на 4 мм поворотом лимба • против часовой стрелки. при смене направления лимба • необходимо компенсировать боковой зазор.
- После позиционирования зажмите направляющие винтом 4.
- Зажмите винт 4.
- Обслуживание

Раз в неделю:

- Смазка через масленку **3** маслом ISO UN G220. Время от времени:
- Очищайте и смазывайте конические и цилиндрические прилегающие поверхности.
- Смазывайте установочный штифт 2 антифрикционной смазкой.
- Очищайте и смазывайте направляющие перемещения инструмента.
- ВАЖНО:
- Державка инструмента должна прочно крепиться за направляющие.
- * При холостом ходе, если вы проскочили необходимое вам значение, поверните лимб в обратном направлении на один оборот и затем отрегулируйте нужный размер.



# Руководство по использованию



- О Корпус
- 2 Установочный штифт
- ***3** Градуированный лимб
- Отопорный винт перемещения
- **6** Стопорный винт державки инструмента
- 6 Отверстие для СОЖ
- Направляющая
- 8 Масленка
- 9 Стопорный винт державки инструмента
- Ф Диапазон перемещения Не заходите за отметки

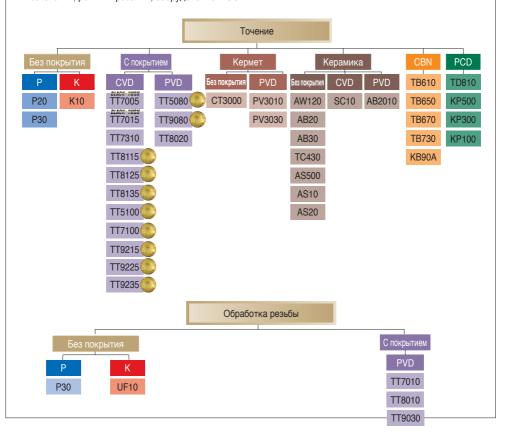




# ТЕХНИЧЕСКОЕ РУКОВОДСТВО

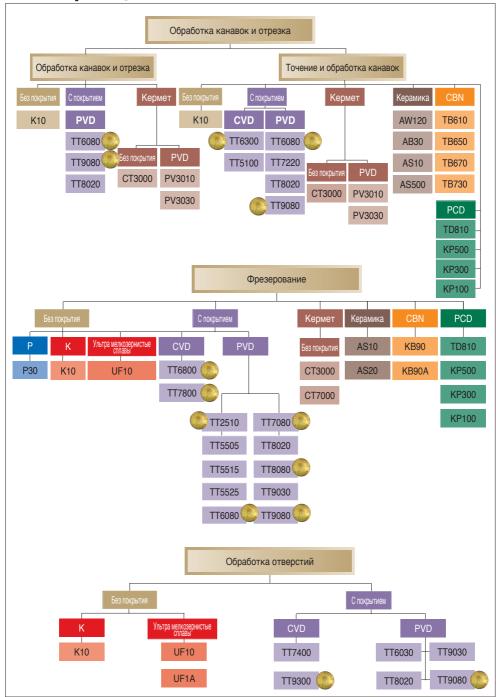
-Сплавы

Рекомендации по выбору сплавов	TI4
Сравнительная таблица сплавов	TI7
Сравнительная таблица токарных стружколомающих геометрий	TI12
Сравнительная таблица твердости	TI16
Переводная таблица материалов	TI18

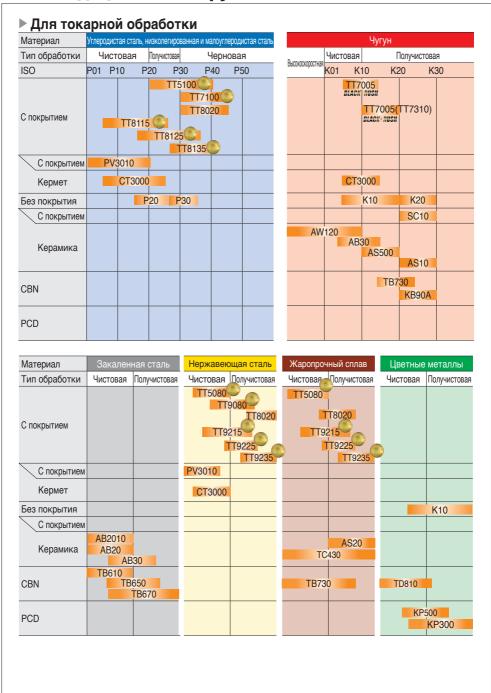

# Классификация сплавов

Сплавы TaeguTec с покрытием производятся по специальному технологическому процессу, который объединяет сплавы с покрытием CVD и PVD, охватывая широкий диапазон применений. Этот диапазон включает в себя сплавы как для высокоскоростной обработки, так и для тяжелого чернового резания. Такое разнообразие применений возможно благодаря высокой износостойкости покрытий TaeguTec, которые обладают такими свойствами как стойкость к выкрашиванию твердых и/ или упрочненных подложкек.

Покрытие CVD состоит из двух основных слоев: упрочненный MT CVD TiCN и микроструктурный слой окиси алюминия со специально разработанной подложкой, которая упрочняет режущую кромку. Покрытие PVD, состоящее из сочетания слоев TiAlN, AlTiN и AlTiCrN, производится по уникальному процессу TaeguTec с контролем структуры на нано-уровне и снятием остаточных напряжений.


ТаедиТес представляет новую концепцию покрытий 'GOLD-RUSH'. Это новое покрытие с гладкой поверхностью ярко-желтого цвета обеспечивает низкие силы трения режущей кромки и антиадгезионные свойства во время обработки.

Лучшие параметры обработки на любой операции - это результат выбора подходящего сплава и геометрии пластины, соответствующих конкретным условиям обработки, а именно: материал заготовки, режимы резания, оборудование и СОЖ.




# Техническое руководство |

## Классификация сплавов



# Рекомендации по выбору сплавов



# Рекомендации по выбору сплавов





Для обра	абот	KИ	кан	ıaı	вок	и от	ре	<b>3</b> K	И
Материал	Углероди	истая ст	аль, ни:	зколе	гированн	ая и мало	угле	родис	гая сталь
Тип обработки	D	Чистова		Я	Получистова	A C	Чернова		Я
ISO / ANSI	Высохоохоростная	P01 I	210	P	20 P	30 P	40	P5	0
С покрытием					TT510	A CONTRACTOR		20	
С покрытием			PV3	030	)				
Кермет			СТЗ	000	)				
Без покрытия									
Керамика									
CBN									
PCD									
Материал	Зак	аленн	ая ст	аль	H	Нержав	ею	щая	сталь
Тип обработки		Чисто	вая		L	Іистова	ιЯ	Получ	нистовая
С покрытием								100 080	

**AB30** 

TB650

**TB610** 

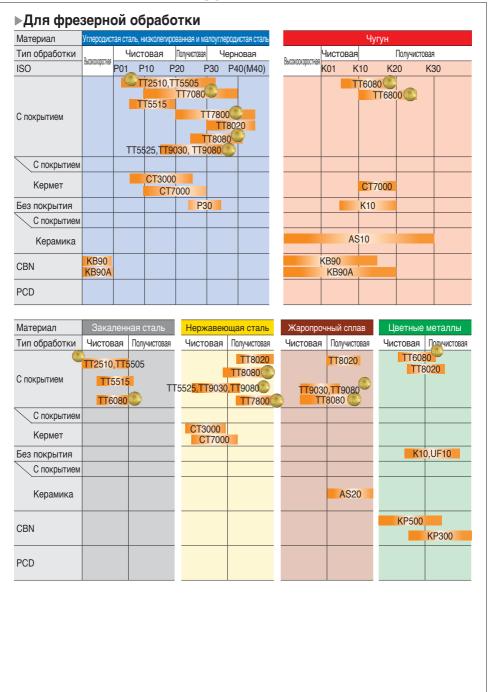
С покрытием

Кермет

Без покрытия С покрытием Керамика

**CBN** 

PCD


PV3030

CT3000



KP300

# Рекомендации по выбору сплавов



# Техническое руководство Т

SO	TaeguTec	Sandvik	Walter	Seco	Kennametal	Mitsubishi	Sumitomo	Tungaloy	Kyocera	Korloy	Iscar
	TT8115	GC4205 GC4005	WPP05	TP0500	KCP05	UE6105 UE6005	AC810P AC500G	T9105 T9005	CA5505		
	TT8115	GC4215 GC4015	WPP10S WPP10	TP1500 TP1000	KCP10 KCP10B KC9110	UE6110 UE6010	AC1000 AC700G	T9115 T9015	CA515 CA5515	NC3010 NC3015	IC815 IC915
Р	TT8125 TT5100	GC4325 GC4225	WPP20S WPP20	TP2500 TP2000	KCP25 KCP25B KC9125	MC6025 UE6020	AC820P AC2000 ACZ310	T9125 T9025	CA525 CA5525	NC3220 NC3120 NC3020	IC825 IC925
	TT8135 TT7100	GC4235 GC4035 GC2135	WPP30S WPP30	TP3500 TP3000 TP40	KCP30 KCP40 KC9040	UE6135 UH6400	AC830P AC3000	T9135 T9035	CA5535 CR9025	NC3030 NC500H	IC835 IC935
	TT9215	GC2015	WSM10 WAM10	TM2000 TP200	KCM15	MC7015 US7020 VP05RT	AC610M EH10Z	T6120	CA6515	PC8110 NC902	IC601 IC807
M	TT9225	GC2025	WSM20 WAM20	CP500	KCM25	MC7025 US735	AC630M AC304	T6130 AH630 T6020	CA6525	NC9025	IC602 IC930
	TT9235 TT8020	GC2035 GC30 GC235	WSM30 WAM30	TM4000 TP400	KCM35	UH6400 MP7035	AC3000	AH645 T6030	PR630	NC5330 PC9030	IC302
	TT7005	GC3205 GC3005	WKK10S WAK10	TK1001 TK1000	KCK05 KC9315	MC5005 UC5105	AC405K AC410K AC300G	T5105 T5010	CA4505 CA4010	NC6205 NC6105	IC501 IC402
K	TT7015 TT7310	GC3210 GC3015	WKK20S WAK20	TK2001 TK2000	KCK15 KCK15B KC9325	MC5015 UC5115	AC415K AC500G	T5115 T5020	CA4515 CA4115 CA4120	NC6210 NC6110	IC500
		GC3215	WAK30		KCK20		AC420K	T5125		NC315K	
ВН	TT5080	GCS05F GC1105 GC1115	WSM10	TH1000 TH1500 TS2000 TS2500 CP200	KCU10 KC5510 KC5010	VP05RT VP10RT	AC510U EH510Z EH10Z	AH110	PR1005 PR930	PC8110	IC807 IC907
ВН	TT9080	GC15 GC1125 GC1025 GC1515 GC1525	WSM20 WSM30	CP500	KCU25 KC5525 KC5025	VP15TF VP20RT	AC520U EH20Z	AH120	PR1025 PR1125 PR1225 PR1425	PC5300 PC9530	IC808

SO	TaeguTec	Sandvik	Walter	Seco	Kennametal	Mitsubishi	Sumitomo	Tungaloy	Kyocera	Korloy	Iscar
	TT2510	GC1010 GC1030	WHH15 WXM15	MH1000 F15M MP1500 F30M	KC510M KC522M KC635M	MP8010 VP15TF				PC210F	IC903 IC900
	TT7080 TT7030	GC4220 GC4230	WKP25 WAM10 WAM20	MP1500 MP2500 T250M				T3130 AH330	PR630 PR660 PR730	PC3600 PC3500 PC3535 PC3525	IC950
P	TT9080 TT9030	GC1030 GC4240	WAM30	F30M MP3000	KC522M KC635M	VP15TF VP20RT	ACP200	AH725 AH730 GH330 AH120	PR9925 PR830	PC5300 NC5330 PC9530	IC808 IC908
	TT8080 TT8020 TT7800	GC4240 GC1040	WKP35 WXP45 WSP45	F40M T350M	KC725M KC735M KC935M KCPM20	VP30RT FH7020 F7030	ACP300 ACZ350	AH140 T3130 AH130		PC3545	IC830 IC330 IC928
M S	TT9080 TT9030	GC1030 GC2030 S30T GC1025	WAM30 WXM35	MH1000 MP2500 F30M	KC635M	VP15TF	ACP200	T3130 AH725 AH120	PR730 PR830 PR9925 PR925 PR1025	PC5300 PC9530 NC5330	IC808 IC908
VI 3	TT8080 TT8020	GC2040 S40T	WXM35 WSM35 WSP45	F40M MM4500 MS2500	KC725M	F7030 VP30RT MP9030	ACP300 EH20Z EH520Z	AH130 AH140 SH730	PR1225 PR905	PC3545 PC5300	IC830 IC330 IC928
K	TT6800	GC3220 GC4220	WAK15	MK1500 MP1500	KC915M KCK15	MC5020				PC8110	IC5100
K	TT6080	GC1020 GC4230 GC3040 GC4240	WKP25 WKP35	MK2050 MK2000 MK3000	KCK15 KC520M	MP8010 VP15TF F5010	ACK200 ACK300 ACZ310	T1015 T1115 AH120 GH110	PR905 PR510 PR610	PC6510 PC215K PC5300	IC810 IC910

# Техническое руководство 🖵 🕤

SO	TaeguTec	Sandvik	Kennametal	Sumitomo	Kyocera	Tungaloy	Mitsubishi	Korloy	Seco	NTK	Ceramte
P01	PV3030 PV3010		KT315	T110A T1000A T1500Z	PV30 TN30 PV7010	GT720 NS710	AP25N NX2525	CC105 CC115 CN1000		T3N	SC35
P10	CT3000	CT5005 CT5015 CT525 GC1525	KT5020 KT125 KT150	T1500A T1200A T2000Z	PV7020 PV7025 PV60 TN6010 TN6020 TN60	GT730 GT530 NS520 NS720	MP3025 UP35N	CN2000 CC125	TP1030 CMP CM	T15 C30 Q50	SC15 SC8011 SC7031 SC40
P20	CT7000	CT530	KT1120 KT175	T3000Z T130Z	TN100M TC60M PV90	NS730 NS530	VP45N NX99 NX3035	CN20 CN30	MP1020 TP1020 C15M	N20 Z15 C50 C7X	SC701: SC60
<b>-</b> 30				T250A T130A		NS740	NX4545			Q50 N40	
//01	PV3010 PV3030		KT315	T110A	PV30 TN30 PV7010	GT720 NS710	AP25N NX2525	CC105 CC115 CN1000		T3N	SC35
И10	CT3000	CT5005 CT5015 CT525 GC1525	KT5020 KT125 KT150	T1500A T1200A T2000Z	PV7020 PV60 TN6010 TN6020 TN60	GT730 GT530 NS520 NS720	MP3025 UP35N	CN2000 CC125	TP1030 CMP CM	T15 C30 Q50	SC15 SC801 SC703 SC40
/120	CT7000	CT530	KT1120 KT175	T3000Z T130Z	TN100M TC60M PV90	NS730 NS530	VP45N NX99 NX3035	CN20 CN30	TP1020 C15M	N20 Z15 C50 C7X	SC701 SC60
//30				T250A T130A		NS740	NX4545			Q50 N40	
<b>(</b> 01	PV3030		KT315	T110A T1000A T1500Z	PV30 PV7005 PV7020 PV60	NS710 GT720 NS720 NS520	AP25N NX2525	CN1000	СМ	T3N Q15	SC801
<b>&lt;</b> 10	CT3000	CT5015	KT125	T1200A T2000Z	TN60 TN6020	GT730 NS730 NS530		CN2000	C15M	T15 Z15 C7Z	SC701
<b>&lt;20</b>				T3000Z							

Применение	Состав	TaeguTec	Sandvik	Kennametal	Ceramtec	NTK	Kyocera	Sumitomo	Ssang-yong
	Al ₂ O ₃	AW120	CC620		SN60 SN80	HC1 HW2	KA30		SZ200 SZ300
	Al ₂ O ₃ +TiC	AB30	CC650	KY1615	SH2 SH4	HC2 HC5 HC6	A65	NB90S NB90M	ST100 SD200 TC100 (PVD)
Чугун	SiAION	AS500		KY300 KY1310 KYK10	SL506 SL508 SL606 SL608			SN200K SN2100K	
<b>чугун</b>	Si ₃ N ₄	AS10	CC6090 CC6091	KY1320 KY3500	SL500 SL808	SX1 SX2 SX6	KS500 KS6000 KS6050	NS260	SN26 SN300 SN400 SN500 SN600
	Si ₃ N ₄ +CVD	SC10	CC1690	KY3400 KYK25	SL550C SL554C SL654C SL658C SL854C SL858C	SP2 SP9	CS7050	NS260C	
Закаленная	Al ₂ O ₃ +TiCN	AB20			SH2 SH4	HC2 HC5 HC7			ST300 ST500 ST700
сталь	Al ₂ O ₃ +TiCN + PVD	AB2010	CC6050	KY4400		ZC4 ZC7	A66N PT600M	NB100C	TC300
	Al ₂ O ₃ +SiCw	TC430	CC670	KY4300		WA1		WX2000	SW500 SW800
аропрочный плав	Si ₃ N ₄ +TiN	AS20							
	SiAION		CC6060 CC6065	KY2100 KY1540 KYS30 KYS25		SX5 SX7 SX9	KS6040		SN800 SN900

# Техническое руководство 🛏 🎞

# Сравнительная таблица сплавов

### **▶** Сплавы СВN

	Прим	енение	TaeguTec	Tungaloy	Sandvik	Kennametal	Ceramtec	Seco	Sumitomo
	Закаленная сталь	Непрерывная обработка	TB610	BX310	CB7015	KB1610 KB5610 KB9610	WBN575	CBN10 CBN050C	BNX10 BNC100
			TB650	BX530 BX330 BXM20	CB7025	KB1625 KB5625	WBN570 WBN560	CBN100 CBN160C	BN250 BNX20 BNC160 BNC200
		Универсальная	TB670	BX360 BX380 BXC50		KB1630 KB5630	WBN555	CBN150 CBN100P	BN350 BNX25 BN500 BNC300
	Uhonu	Универсальная	TB730(KB90)	BX930 BX850 BX950 BX470 BX480	CB7050	KB1345 KB9640	WBN735 WBN750	CBN200 CBN400C	BN100 BN700
		Монолитные пластины CBN	KB90A	BX90S BXC90			WBN100 WBN100C	CBN300 CBN350	BNS800

### ▶ Сплавы PCD

, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DD1 1 0									
ISO	TaeguTec	Iscar	Tungaloy	Sumitomo	Sandvik	Kennametal	Mitsubishi	NTK	Kyocera	Seco
N01-N10	TD810		DX180	DA90		KD1425			KPD230	PCD30M
	KP500	ID8	DX160				MD203			PCD30
N05-N20	KP300	ID5	DX140	DA150	CD10		MD220	PD1	KPD010	PCD20
N15-N30	KP100		DX120 DX110	DA2200 DA1000		KD1400 KD1405	MD230	PD2	KPD001	PCD10 PCD05

# Сравнительная таблица токарных стружколомающих геометрий

▶ Негативн	ые пласти	ΙНЫ
Назначение	TaeguTec	S

Назначен	ие	TaeguTec	Sandvik	Kennametal	Seco	Walter	Valenite
		WS	WF, WL	FW	W-MF2	NF	W3
		WT	WMX,WM	MW	W-M3	NM	W6
		FA		FF FS	FF1		F2
		F0	0.5	FP	1450	NEO	
		FG	QF	FN	MF2	NF3	
						FP5 NFT	
		FC	PF, LC XF			NS6	
		VF	K		95		
	_			GP-K,MS-		G-NMT, NS4	
	HHAR	ML		MS		NS5,G1	
	горо	MP	GP- XM	GP P	MF3	NM4	M2
	Двусторонняя	IVII	QM	ľ	IVII		IVIZ
		MC	SM	MN	MR3	MP3 NM4	
Сталь		PC	PM	IVIIV	M3	NM6	
		MT	XMR	MP		MP5	МЗ
		IVI		RP		NS8	IVIO
		MG-		UN	M4	MG-	
		RT	PR HM	UM RN MG-	M5 MR7, M6	NM5,NM7 NRT, RP5 NM6,NM9	R3
		RX	PR	RM		NRF	
	Односторонняя	RH	QR	RP	R6,RR9 R5,R4,37	NR6 NR5,NR8	R6
	ностс		MR		RR6 R8,56,57	NR7	
	О	HT, HD	HR, 31	RH	R7	NRR	
		HY, HZ	1	FD.	145	NIE :	
		EA,SF	MF	FP MU1, MS1	MF1	NF4 NMS	F5
	HHHH	EM	MM	UP	MF4	NM4	
ержавеющая таль	Двусторонняя	ET	MR MM-MR	RP	MR6, MF5 MM-RR6	NR4 NMS	M5
		SU	SF, SGF MX-SM, 23, SM SR, SMR	FH, FX MS, MH, MX			
Ulverni	Двусторонняя	MT	KF,KM	FN	M5		
Чугун	вусто	MG-	KD.	RP	MDZ	NM5, MK5	
	□	RT	KR	UN	MR7		

Mitsubishi	Sumitomo	Kyocera	Tungaloy	Korloy	Iscar
SW	LUW, SEW	WP	AFW	LW	WO
MW FH	GUW FL,FA	WQ GP, DP, XF	ASW TF	VW,HW HU	WG
	,. / .	XP		110	SF
SH	SU SE	PP HQ	ZF ZM,TS, NS,NM TSF	VG,HF,GF VF VQ	NF
FY,SA	LU	CJ		VL, VB, HC	
LP	OVUM	CQ,PQ	0		
ES	GX,HM	V0	\$		40
FJ,SY		XQ	CB,17	HA	12
MJ	UP	A3, AH XS		VP2	PP
				HS,GS, VP3	TF VL
		GS	AS	HC	
MP, MV	GE,GU	PS	TM	VM	
1011 , 101 0	GE,GO	10	1 101	V 1V1	
MA	UX,UG	HS CS		HM,GM	GN
MG-	UZ	MG- C	38 DM,MG- 33,37	B20,B25	MG-
MH,GJ GH, RP HAS,HDS	ME MU, MX	GT,PT PH,HT	TH	HR, GR	NR
		PX			
HZ HA HH	MP HG HP	НХ	TRS 57	GH	RP NM
HC5	HF		65	V7.111.	
HX,HBS HV,HDS,	HU		TU	VT,HH	
HXD	HW			VH,B40	
FS	SU	MQ,GU		HA	
MS	EX	MU MS	SS	VP3 HS	
	GU	HU	SM	GS	TNM
			HMM, SA		
144	UZ.	MO	CF		
MA MG-	UZ	MG- C	СМ	B25	
GH	GZ	ZS, GC	СН	GR	

# Сравнительная таблица токарных стружколомающих геометрий

### ▶ Позитивные пластины

Назначение	TaeguTec	Sandvik	Kennametal	Seco	Walter	Valenite
	WT	WM	MW	W-F2	PF	
	FA	PF,UF	UF,11,GM	FF1	PF4 PF5	
	SA					
Сталь	FG	UM XF	FP LF	F1	PS4 PS5	PM3 PM4
	PC	PM	MP		PF2	
	MT	XM PR,UR XR	MF	F2	PM5 E47, MT-	PM5
	PMR-	PMR-	PMR-		PMR-	
Алюминий	FL	AL	HP	AL	PM2	IL

Mitsubishi	Sumitomo	Kyocera	Tungaloy	Korloy	Iscar
MW					WG
FV	LU FP	XP GK, GP, DP	01,PF,PSF	HFP	38, PF
SMG	FC	CF, GF GQ GR	JS		
SQ,SV	FK SU SC,SK	XQ HQ		VF HMP,C05	SM 16, GT-
			PSS PS		
MQ,MV MT- G	SF,MU	MT-	PM	C25	14, 17 19, MT-
PMR-	UJ	GP,HQ G,PMR-	23		
AZ	AG	AH	AL	AR	AF, AS

# Сравнительная таблица твердости

		неллю, шарик 10мм а 3000кгс		Твёрдос	гь по Роквеллу			
Гвёрдость по Викерсу 50кг	Стандартный шарик	Твердосплавный шарик	Шкала А 60кгс алмазный индентор НRA	Шкала В 100кгс шарик 1/16 HRB	Шкала С 150кгс алмазный индентор HRC	Шкала D 100кгс алмазный индентор HRD	Твёрдость по Шору НS	Предел прочность Н/мм ² (кгс/мм ² )
1900			93.1		80.5	TIIIO	110	
1800			92.6		79.2			
1700			91.9		77.9			
1600			91.3		76.6			
1500			90.5		75.3			
1450			90.3		74.6			
1400			89.6		74.0			
1350			89.1		73.4			
1300			88.7		72.7			
1250			88.3		72.1			
1200			87.9		71.5			
1150			87.5		70.9			
1100			87.1		70.3			
1050			86.6		69.6			
1000			86.2		68.9			
940			85.6		68.0	76.9	97	
920			85.3		67.5	76.5	96	
900			85.0		67.0	76.1	95	
880		<b>(7</b> 67)	84.7		66.4	75.7	93	
860		(757)	84.4		65.9	75.3	92	
840		(745)	84.1		65.3	74.8	91	
820		(733)	83.8		64.7	74.3	90	
800		(722)	83.4		64.0	74.8	88	
780		(710)	83.0		63.3	73.3	87	
760		(698)	82.6		62.5	72.6	86	
740		(684)	82.2		61.8	72.1	84	
720		(670)	81.8		61.0	71.5	83	
700		(656)	81.3		60.1	70.8	81	
690		(647)	81.1		59.7	70.5		
680		(638)	80.8		59.2	70.1	80	
670		630	80.6		58.8	69.8		
660		620	80.3		58.3	69.4	79	
650		611	80.0		57.8	69.0	_	
640		601	79.8		57.3	68.7	77	2205(210
630		591	79.5		56.8	68.3	7-	2020(206
620		582	79.2		56.3	67.9	75	1985(202
610		573	78.9		55.7	67.5	7.4	1950(199
600		564	78.6		55.2	67.0	74	1905(194
590		554	78.4		54.7	66.7	70	1860(190
580		515	78.0		54.1	66.2	72	1825(186
570		535	77.8		53.6 53.0	65.8 65.4	71	1795(183
560	(E0E)	525 517	77.4			64.8	/ 1	1750(179
550 540	(505)	517	77.0 76.7		52.3 51.7	64.8	69	1750(174
540	(496)		76.7		51.7	66.2	09	1660(169
530	(488)	497			50.5	63.5	67	1620(165
520	(480)	488	76.1			1	67	1570(160
510 500	(473) (465)	479 471	75.7 75.3		49.8 49.1	62.9 62.2	66	1530(156
	(465)	460	75.3		49.1	61.6	00	1459(153 1460(149
490								

[•] Примечание: значения, выделенные серым взяты из таблицы ASTM E140 (рассчитаны по SAE-ASM-ASTM)



		неллю, шарик 10мм а 3000кгс		Твёрдость	по Роквеллу			П
Гвёрдость по Викерсу 50кг	Стандартный шарик	Твердосплавный шарик	Шкала А 60кгс алмазный индентор НВА	Шкала В 100кгс шарик 1/16 HRB	Шкала С 150кгс алмазный индентор НВС	Шкала D 100кгс алмазный индентор HRD	Твёрдость по Шору НS	Предел прочности Н/мм ² (кгс/мм ² )
470	441	442	74.1		46.9	60.7		1570(160)
460	433	433	73.6		46.1	60.1	62	1530(156)
450	425	425	73.3		45.3	59.4	02	1459(153)
440	415	415	72.8		44.5	58.8	59	1460(149
430	405	405	72.3		43.6	58.2		1410(144
420	397	397	71.8		42.7	57.5	57	1370(140
410	388	388	71.4		41.8	56.8		1330(136
400	379	379	70.8		40.8	56.0	55	1290(131
390	369	369	70.3		39.8	55.2		1240(127
380	360	360	69.8	(110.0)	38.8	54.4	52	1250(123
370	350	350	69.2	, ,	37.7	53.6		1170(120
360	341	341	68.7	(109.0)	36.6	52.8	50	1130(115
350	331	331	68.1	, ,	35.5	51.9		1095(112
340	322	322	67.6	(108.0)	34.4	51.1	47	1070(109
330	313	313	67.0	,	33.3	50.2		1035(105
320	303	303	66.4	(107.0)	32.2	49.4	45	1005(103
310	294	294	65.8	, ,	31.0	48.4		980 (10)
300	284	284	65.2	(105.5)	29.8	47.5	42	950 (97)
295	280	280	64.8	, ,	29.2	47.1		935 (96)
290	275	275	64.5	(104.5)	28.5	46.5	41	915 (94)
285	270	270	64.2		27.8	46.0		905 (92)
280	265	265	63.8	(103.5)	27.1	45.3	40	890 (91)
275	261	261	63.5		26.4	44.9		875 (89)
270	256	256	63.1	(102.0)	25.6	44.3	38	855 (87)
265	252	252	62.7		24.8	43.7		840 (86)
260	247	247	62.4	(101.0)	24.0	43.1	37	825 (84)
255	243	243	62.0		23.1	42.2		805 (82)
250	238	238	61.6	99.5	22.2	41.7	36	795 (81)
245	233	233	61.2		21.3	41.1		780 (79)
240	228	228	60.7	98.1	20.3	40.3	34	765 (78)
230	219	219		96.7	(18.0)		33	730 (75)
220	209	209		95.0	(15.7)		32	695 (71)
210	200	200		93.4	(13.4)		30	670 (68)
200	190	190		91.5	(11.0)		29	635 (65)
190	181	181		89.5	(8.5)		28	605 (62)
180	171	171		87.1	(6.0)		26	580 (59)
170	162	162		85.0	(3.0)		25	545 (56)
160	152	152		81.7	(0.0)		24	515 (53)
150	143	143		78.7			22	490 (50)
140	133	133		75.0			21	455 (45)
130	124	124		71.2			20	425 (44)
127	121			69.8			19	(42)
122	116			67.6			18 15	(41)
117	111			65.7			15	(39)

[•] Примечание: значения, выделенные серым взяты из таблицы ASTM E140 (рассчитаны по SAE-ASM-ASTM)



а ла AISI/SAE	Материа	л по DIN	BS	EN	AFNO
A 366 (1012) 1008	0.0030	C10	040 A 10 045 M 10 1449 10 CS		AF 34 C 10 XC 10
	1.0028	Ust 34-2 (S250G1T)	11.01000		A 34-2
	1.0034	RSt 34-2 (S250G2T)	1449 34/20 HR, HS,CR,CS		A 34-2 NE
	1.0035	St185 (Fe 310-0) St 33	Fe 310-0 1449 15 HR,HS		A 33
A 570 Gr. 33,36	1.0036	S235JRG1 (Fe 360 B) Ust 37-2	Fe 360 B 4360-40 B		
	1.0037	S235JR (Fe 360 B) St 37-2	Fe 360 B 4360-40 B		E 24-2
1115	1.0038	GS-CK16	030A04 1/	4	
A 570 Gr. 40	1.0044	S275JR (Fe 430 B) St44-2	Fe 430 B FN 1449 43/25 HR, HS 4360-43 B		E 28-2
	1.0045	S355JR	4360-50 B		E 36-2
A 570 Gr.50 A 572 Gr.50	1.0050	E295 (Fe 490-2) St 50-2	Fe 490-2 FN 4360-50 B		A 50-2
A 572 Gr. 65	1.0060	E335 (Fe 590-2) St 60-2	Fe 60-2 4360-55 E; 55 C		A 60-2
	1.0060	St 60-2			
	1.0070	E360 (Fe 690-2) St 70-2	Fe 690-2 FN		A 70-2
	1.0112	P235S	1501-164-360B LT20		A37AP
	1.0114	S235JU;St 37-3 U	4360-40C		E 24-3
A 284 Gr.D	1.0116	S235J2G3 (Fe 360 D 1)	Fe 360 D1 FF		E 24-3
A 573 Gr.58 A 570 Gr 36;C A 611 Gr. C		St 37-3	1449 37/23 CR 4360-40 D		E 24-4
	1.0130	P265S	1501-164-400B LT 20		A 42 AP
	1.0143	S275J0; St 44-3 U	4360-43C		E 28-3

H				# <b>O</b> #	
SS	UNI	UNE	JIS	KS	GOST
	C 10 1 C 10	F.1511 F.151A	S 10C	SM 10C	10
	Fe 330,Fe 330 B FU		SS 330	SS 330	
	Fe 330 B FU				St2sp
1300	Fe 320	Fe 310-0			St0
1311 1312	FE37BFU	AE 235 B Fe 360 B			16D, 18Kp St3Kp
1311	Fe 360 B 1449 37/23 HR	AE 235 B Fe 360 B	STKM 12A;C	STKM 12A;C	
1325	Fe 330,Fe 330 B FU		SS 330	SS 330	
1412	Fe 430 B Fe 430 B FN	AE 275 B Fe 430 B FN	SM 400 A;B;C	SM 400 A;B;C	St4ps; sp
2172	Fe 510 B	AE 355 B			
1550 2172	Fe 490	a 490-2 Fe 490-2 FN	SS 490	SS 490	ST5ps; sp
1650	Fe 60-2 Fe 590	A 590-2 Fe 590-2 FN	SM 570	SM 570	St6ps; sp
	Fe 60-2				
1655	Fe 70-2 Fe 690	A 690-2 Fe 690-2 FN			
	Fe 360 C	AE 235 C			
	Fe 360 C	AE 235 C			
1312	Fe 360 D1 FF				
1313	Fe 360 C FN Fe 360 D FF Fe 37-2	AE 235 D Fe 360 D1 FF			St3kp; ps; sl 16D
		SPH 265			
1414-01	Fe 430 D	AE 275 D			



# Texh Texh

ппа оиала	AISI/SAE	Материал	ı по DIN		BS	EN	AFNOR
1	A 573 Gr. 70	1.0144	S275J2G3 (Fe 430	D 1)	Fe 430 D1 FF		E 28-3
	A 611 Gr.D		St 44-3		4360-43 C; 43 D		E 28-4
1		1.0149	S275JOH; RoSt 44	4-2	4360-43C		
1		1.0226	DX51D; St 02 Z		Z2		GC
1	M 1010	1.0301	C10		040 A 10 045 M 10 1449 10 CS		AF 34 C 10 XC 10
	A 621 (1008)	1.0330	DC 01		1449 4 CR		
			St 2; St 12		1449 3 CS		TE
1	A 619 (1008)	1.0333	Ust 3 (DC03G1) Ust 13		1449 2 CR;3 CR		E
	A 621 (1008)	1.0334	UStW 23 (DD12G	1)			SC
1	A 622 (1008)	1.0335	DD13; StW 24		1449 1 HR		3C
	A 620 (1008)	1.0338	DC04 St4; St 14		1449 1 CR;2 CR		ES
	A 516 Gr. 65; 55 A 515 Gr. 65;55 A 414 Gr. C A 442 Gr.55	1.0345	P235GH HI		1501 Gr. 141-360 1501 Gr. 161-360 1501 Gr. 161-400 1501 Gr. 164-360	); 151-360 ); 154-360	A 37 CP;AP
	(M) 1020 M 1023	1.0402	C22		055 M 15, 070 M 1499 22 HS, CS	l 20 2C/2D	AF 42 C 20; XC 25;1 C 22
1	1020	1.0402	C22		050A20	2C/2D	CC20
1	1020;1023	1.0402	C22		055 M 15, 070 M	1 20 2C	AF 42 C 20; XC 25;1 C 22
ı		1.0425	P265GH	НⅡ	1501 Gr. 161-400 1501 Gr. 164-360 1501 Gr. 164-400	; 161-400	A 42 CP; AP
	A27 65-35	1.0443	GS-45		A1		E 23-45 M
1		1.0539	S355NH;StE 335				TSE 355-4
		1.0545	S355N; StE 355		4360-50E		E 355 R
		1.0546	S355NL;TStE 355		4360-50EE		E 355 FP
		1.0547	S355JOH		4360-50C		TSE 355-3
1		1.0549	S355 NLH;TStE 3	55			
1		1.0553	S355JO;St 52-3U		4360-50C		E 36-3

+		*		<b>**</b>	
SS	UNI	UNE	JIS	KS	GOST
1411, 1412 1414	Fe 430 B, Fe 430 C (FN) Fe 430 D (FF)	AE 275 D Fe 430 D1 FF	SM 400 A;B;C	SM 400 A;B;C	St4kp> ps; sp
1412-04	Fe 430 C	Fe 430 C			
1151 10	FeP 02 G	FeP 02 G			
	C 10 1 C 10	F.1511 F.151.A	S 10C	SM 10C	10
	FeP 00 FeP 01	AP 11	SPHD	SPHD	15kp
	FeP 02	AP 02	SPCD	SPCD	
	FeP 12	AP 12	SPHE	SPHE	10kp
	FeP 13	AP 13	SPHE	SPHE	08kp
1147	FeP 04	AP 04	SPCE	SPCE	08jU; JUA
1331 1330	FeE235, Fe 360 1 KW;KG Fe 360 2 KW;KG	A 37 RC I RA II	SGV 410, SGV 450, SGV 48, SPV 450;SPV 480	SGV 410, SGV 450, SGV 480, SPPV 450;SPPV 480	
1450	C 20 C 21, C 25	1 C 22 F.112	S20C	SM 20C	20
1450	C20, C21	F.112	S22C	SM 22C	20
1450	C 20; C 21;C 25	1 C 22F.112	S 20 C;S 22 C	SM 20 C;SM 22C	
1431 1430 1432	Fe 410 1 KW; KG; KT Fe 410 2 KW; KG	A 42 RC I A 42 RC II	SPV 315; SPV 355 SG 295; SGV 410 SGV 450; SGV 480	SPPV 315; SPPV 355 SG 295; SGV 410 SGV 450; SGV 480	16K 20K
1305					
2134-04	Fe 510 B	Fe 355 KGN			
2334-01	FeE 355 KG	AE 355 KG			
2135-01	FeE 355 KT	AE 355 KT			
2172-04	Fe 510 C	Fe 510 C			
2135	Fe 510 D	FeE 355 KTM			
	Fe 510 C				



уппа ериала	AISI/SAE	Материа	л по DIN	BS EN	AFNOR
1	A 633 Gr.C A 588	1.0562	P355N StE 355	1501 Gr.225-490A LT 20	FeE 355 KG N E 355 R/FP; A 510 AP
1		1.0565	P355NH; WStE 355	1501-225-490B LT 20	A 510 AP
1		1.0566	P355NL1; TStE 355	1501-225-490A LT 50	A 510 FP
1	1	1.0570	S355J2G3 St 52-3	Fe 510 D1 FF 1449 50/35 HR>HS 4360-50 D	E 36-3 E 36-4
1	1213	1.0715	9 SMn 28 (1SMn30)	230 M 07	S 250
1	1213	1.0715	9 SMn 28	230 M 07	S 250
1	12 L 13	1.0718	9 SMnPb 28 (11SMnPb30)		S 250 Pb
1	1108 1109	1.0721	10 S 20	(210 M 15)	10S20 10F 2
1	11 L 08	1.0722	10 SPb 20		10PbF 2
1	11 L 08	1.0722	10 SPb 20		10PbF 2
1	1215	1.0736	9 SMn 36 11SMn37)		S 300
1	12 L 14	1.0737	9 SMnPb 36 (11 SMnPb37)		
1		1.0972	S315MC; QStE 300 TM	1501-40F30	E 315 D
1		1.0976	S355MC; QStE 360 TM	1501-43F35	E 355 D
1		1.0982	S460MC; QStE 460 TM	1501-50F45	
1		1.0984	S500MC; QStE 500 TM		E 490 D
1		1.0986	S500MC; QStE 500 TM	1501 - 60F55	E 560 D
1	1010	1.1121	CK 10 (C10E)	040 A 10	XC 10
1		1.1121	St 37-1	4360 40 A	
1	1015	1.1141	CK 15 (C15E)	040 A 15 32C 080 M 15	XC 12 XC 18 XC 18
1	1020 1023	1.1151	C22E CK 22	055 M 15 (070 M 20)	2 C 22 XC 1 XC 25
1	D 3	1.2080	X 210 Cr 12	BD 3	Z 200 C 12

					46-16	
					#	
SS	UNI		UNE	JIS	KS	GOST
2106	FeE 355 KG;KW		AEE 355 KG;DD	SM 490 A;B;C; YA;YB	SM 490 A;B;C; YA;YB	15GF
2106	FeE 355-2					
2107-01	FeE 355-3					
2132, 2133 2134, 2174	17GS 17G1S		AE 355 D Fe 510, D1 FF	SM 490 A;B;C; YA;YB	SM 490 A;B;C; YA;YB	17GS 17G1S
1912	CF SMn 28		F.2111 - 11 SMn 28	SUM 22	SUM 22	
1912	CF 9 SMn 28		11 SMn 28	SUM 22	SUM 22	
1914	CF 9 SMnPb 28		F.2112-11 SMnPb 28	SUM 22 L SUM 23 L, SUM 24 L	SUM 22 L SUM 23 L, SUM 24 L	
	CF 10 S 20		F. 2121 - 10 S 20			
	CF 10 SPb 20		F.2122-10 SPb 20			
	CF 10 SPb 20		10 SPb 20			
	CF 9 Mn 36		F.2113 - 12 SMn 35	SUM25	SUM25	
2642	FeE 355TM					
2012	1 02 000 1111					
2662	FeE 490 TM					
1265	C 10, 2 C 10 2 C 15		F-1510-C 10 K	S 9 CK S 10 C	S 9 CK S 10 C	08;10
1300						
1370	C 15	C 16	F.1110-C 15 F.1511-C 16 K	S 15 S 15 CK	SM 15C SM 15CK	15
1450	C 20	C 25	F.1120-C 25 K	S 20 C, S 20 CK S 22 C	SM 20 C, SM20 CK SM22 C	20
2642						



a ana AISI/SAE	Материа	л по DIN	BS	EN	AFNOF
A36		St 44-2	4360 43 A		NFA 35-501
		StE 320-3Z	1 501 160		
A572-60	1.8900	StE 380	4360 55 E		
(M) 1025	1.0406	C 25	070 M 26		1 C 25
	1.0416	GS-38			20-400 M
A 537 Cl.1 A 414 Gr. G A 612	1.0473	P355GH	19 Mn 6		A 52 CP
1035	1.0501	C 35	080 A 32, 080 080 M 36, 1449 40 CS	A 35	1 C 35 AF 55 C 35 XC 38
1045	1.0503	CF 45 (C45G)	060 A 47 080 M 46		XC 42 H 1 T
1040	1.0511	C 40	080 M 40		1 C 40 AF 60 C 40
	1.0540	C 50			
A27 70-36	1.0551	GS-52	A2		280-480 M
A148 80-40	1.0553	GS-60	A3		320-560 M
A738	1.0577	S355J2G4 (Fe 510 D 2)	Fe 510 D2 FF 1501 Gr.224-46 1501 Gr. 224-49		A 52 FP
1140	1.0726	35 S 20	212 M 36	8M	35MF 6
1146	1.0727	45 S 20 (46S20)			45 MF 4
1035 1041	1.1157	40Mn4	150 M 36	15	35 M 5 40 M 5
1025	1.1158	C25E CK 25	(070 M 25)		2 C 25 XC 25
1536	1.1166	34Mn5			
1330	1.1170	28Mn6	(150 M 28), (15	0 M 18)	20 M 5, 28 N
1330	1.1170	28Mn6	150 M 5		20 M 5
1330	1.1170	28Mn6		14A	20 M 5
	1.1178	C30E; CK 30	080M30		XC 32

					# <b>•</b> #	
SS	UNI		UNE	JIS	KS	GOST
1411						
1421						
2145	FeE390KG			S 25C	SM 25C	
	C 25 1	C 25				
1306						
2101	Fe E 355-2		A 52 RC I RA	II SGV 410	SGV 410	
2102				SGV 450	SGV 450	
				SGV 480	SGV 480	
1572	C 35		F.113	S35C	SM35C	35
1550	1 C 35					
1672	C 43			S 45 C	SM 45 C	45
	C 46					
	C 40		1 C 40	S 40 C	SM 40 C	
1674	C 50		1 C 50			
1505						
1606						
2107			A 52 RB II AE 355 D			
1957			F.210.G			
1973						
				S 09CK	SMn 433	
C 25	F.1120 - C 25 K		S 25 C S 28 C	S 25 C	SM 25 C	
	TO.B		SMn 433 H			
1421	C 28 Mn		28 Mn 6	SCMn 1	SCMn 1	30G
2145						
	C 28 Mn			SCMn 1	SCMn 1	
	C 30		2 C 30			



Группа териала	AISI/SAE	Материа	л по DIN	BS	EN	AFNOR
2	1035	1.1180	C35R	080 A 35		3 C 35
			Cm 35			XC 32
2	1035	1.1181	C35E	080 A 35		2 C 35, XC 3
	1038		CK 35	(080 M 36)		XC 38 H 1
2	1035	1.1181	C35E	080 A 35		
			CK 35	(080 M 36)		
2	1042	1.1191	GS- Ck 45	080 A 46		XC 45
2	1049	1.1206	C50E	080 M 50		2 C 50
	1050		CK 50			XC 48 H 1;
						XC 50 H 1
2	1050	1.1213	Cf 53	070 M 55		XC 48 H TS
	1055		(C53G)			
2	4520	1.5423	22Mo4	1503-245-420		
3		1.0050	St50-2			
3	A 516 Gr.70	1.0481	P295GH	1501 Gr. 224		a 48 Cp;AP
	A 515 Gr. 70		17 Mn 4			
	A 414 Gr.F; G					
3	1043	1.0503	C35	060 A 47		1 C 45
				080 M 46		AF 65 C 45
				1449 50 HS, CS		
3	1074	1.0614	C 76 D; D 75-2			XC 75
3	1086	1.0616	C 86 D; D 85-2			XC 80
3	1095	1.0618	C 92 D;D 95-2			XC 90
3	1036	1.1165	30Mn5	120 M 36		35 M 5
	1330			(150 M 28)		
3	1335	1.1167	30Mn5	150 M 36		40 M 5
3	1040	1.1186	C40E	060 A 40, 080 A 40		2 C 40
			CK 40	080 M 40		XC 42 H 1
3	1045	1.1191	C45E	080 M 46		2 C 45
			CK 45	060 A 47		XC 42 H 1
						XC 45
						XC 48 H 1

				# <b>*</b>	
SS	UNI	UNE	JIS	KS	GOST
1572		F.1130-C 35 K-1			
1550 1572	C35	F.1130-C 35 K	S 35 C	SM 35 C	35
1572	C36		S 35 C	SM 35 C	
1660	C45	F-1140			
1674	C 50				50
1674	C 53		S 50 C	SM 50 C	50
	16 Mo 5 KG; KW FE50	F.2602- 16 Mo 5	SB 450 M	SB 450 M	SB 480 M
	Fe 510 KG;KT;KW Fe 510-2 KG;KT;KW FeE 295	A 47 RC I RA II	SG 365, SGV 410 SGV 450 SGV 480	SG 365, SGV 410 SGV 450 SGV 480	14G2
1672 1650	C 45 1 C 45	F.114	S 45 C	SM 45 C	45
C 85					
		F.8211-30 Mn 5 f.8311-AM 30 Mn 5	SMn 433 H SCMn 2	SMn 433 H SCMn 2	27ChGSNMDT 30GSL
2120			SMn 438 (H) SCMn 3	SMn 438 (H) SCMn 3	35G2 35GL
	C 40		S 40 C	SM 40 C	
1672	C 45 C 46	F.1140-C 45 K F.1142-C48 K	S 45 C S 48 C	S 45 C S 48 C	45

	стандарту			<u> </u>		
Группа атериала З	a AISI/SAE	Материа		BS	EN	AFNOR
3	1049	1.1201	C45R Cm 45	080 M 46		3 C 45 XC 42 H 1 XC 48 H 1
3		1.7242	18 CrMo 4			
3	A 387 Gr. 12 CI	1.7337	16 CrMo 4 4			
3	A 387 Gr. 12 CI	1.7337	16 CrMo 4 4			
3		1.7362	12 CrMo 19 5	3606-625		Z 10 CD 5.05
3	A572-60		17 MnV 6	436055 E		NFA 35-501 E 36
4	1055	1.0535	C55	070 M 55		1 C 55 AF 70 C 55
4	1060	1.0601	C60	060 A 62 1449 HS,CS	43D	1 C 60 AF 70 C 55
4	1070	1.0603	C67	080 A 67 1449 70HS		XC65
4	1074 1075	1.0605	C75	1449 80 HS		
4	1055	1.1203	C55E CK 55	060 A 57 070 M 55		2 C 5 XC 55 H 1
4	1055	1.1209	C55R Cm 55	070 M 55		3 C 55 XC 55 H 1
4	1060 1064	1.1221	C60E CK 60	060 A 62	43D	2 C 60 XC 60 H 1
4	1070	1.1231	CK 67 (C67E)	060 A 67		XC 68
4	1074 1075 1078	1.1248	CK 75 (C75E)	060 A 78		XC 75
4	1086	1.1269	CK 85 (C85E)			XC 90
4	1095	1.1274	Ck 101 (C101E)			XC 100
4	W 112	1.1663	C 125 W			Y2 120
4						
5		1.0070	St70-2			
5		1.7238	49 CrMo 4			
5		1.7701	51 CrMoV 4			

H				# <b>*</b>	
SS	UNI	UNE	JIS	KS	GOST
1660	C 45	F.1145-C 45K-1 F.1147C 48 K-1	S 50 C	SM 50 C	
18 CrMo 4					
	A 18 CrMo 4 5 KW				
	A 18 CrMo 4 5 KW				
	16 CrMo 20 5				
2142					
1655	C 55 1 C 55		S 55 C	SM 55 C	55
	C 60 1 C 60		S 58 C	SM 58 C	60(G)
	C 67				
	C 75				75
1655	C 55	F.1150-C 55 K	S 55 C	SM 55 C	55
	C 55	F.1155-C 55 K-1			
1655 1678	C 60		S 58 C	SM 58 C	60 60G, 60GA
1770	C 70				65GA 68GA , 70
774	C 75				75(A)
	C 90				85(A)
	C 100	F-5117	SUP 4	SPS 4	
1870					
2223					
	FE70-2				
	51 CrMoV 4				



уппа ериал	a AISI/SAE	Материа	л по DIN	BS	EN	AFNOR
6	A573-81 65	1.0116	St 37-3	4360 40 B		E 24-U
6	A515 65	1.0345	H1	1 501 161		A 37 CP
6	5120	1.0841	St 52-3	150 M 19		20 MC 5
6	9255	1.0904	55 Si 7	250A53	45	55S7
6	9254	1.0904	55 Si 7	250 A 53		55 S 7
6	9262	1.0961	60SiCr7	1 501 161		60SC6
6	L3	1.2067	100Cr6	BL3		Y100C6
6	L1	1.2108	90 CrSi 5			
6	L2	1.2210	115CrV3			100C3
6		1.2241	51CrV4			
6		1.2311	40 CrMnMo 7			
6	4135	1.2330	35 CrMo 4	708 A 37		34 CD 4
6		1.2419	105WCr6	BO1		105WC13
6	0 1	1.2510	100 MnCrW 4	BS1		8 MO 8
6	S1	1.2542	45 WCrV7			
6	S1	1.255	60WCrV7			55WC20
6	L6	1.2713	55NiCrMoV6			55NCDV7
6	L6	1.2721	50NiCr13			55 NCV 6
6	O2	1.2842	90MnCrV8	BO2		90 MV8
6	E 50100	1.3501	100 Cr 2			55WC20
6	52100	1.3505	100Cr6	2 S 135 535 A 99	31	100 C 6
6		1.5024	46Si7			45 S 7; Y 46 7;46 SI 7
6	9255	1.5025	51Si7			51 S 7 51 Si 7
6	9255	1.5026	55Si7	251 a 58		55 S 7
6	9260	1.5027	60Si7	251 A 60 251 H 60		60 S 7
6	9260 H	1.5028	65Si7			60 S 7
6		1.5120	38 MnSi 4			

+				<b>***</b>	
SS	UNI	UNE	JIS	KS	GOST
1312	Fe37-3				
1330					
2172	Fe 52	F-431			
2085	55Si8	56Si7			
2090		F-431			
60SiCr8	60SiCr8				
	100Cr6				
2092	105WCR 5				
	107CrV3KU				
	35 cRmO 8 KU				
2234	35CrMo4	34CrMo4	SCM435TK	SCM435TK	
2140	10WCr6	105WCr5			
2140	10WCr6	105WCr5	SKS 31	STS 31	
2710	45 WCrV8 KU	45WCrSi8			
2710	58WCr9KU				
		F.520.S	SKT 4	STF 4	
2550		f-528			
		1 2 2 2			
2258	100Cr6	F.1310 - 100 Cr 6	\$1112	STB 2	SchCh 15
2230	100010	1.1010 - 100 01 0	0002	OIDZ	OCHOII 13
		F. 1451 - 46 SI 7			
0000	40 C; 7	E 1 450 50 C; 7			
2090	48 Si 7 50 Si 7	F.1450-50 Si 7			
2085 2090	55 Si 7	F.1440 - 56 Si 7			55S2
	60 Si 7	F. 1441 - 60 Si 7			60S2
			50 P 7 SUP 6	SPS 6	



руппа териала	AISI/SAE	Материал	ı по DIN	BS	EN	AFNOR
е́риала 6		1.5415	16Mo3	1503-243 B		15 D 3
	4017		15 Mo 3			
6	4419	1.5419	20Mo4	1503-243-430		
6	A 350-LF 5	1.5622	14Ni6			16N6
6	3415	1.5732	1 NilCr10			14 NC 11
6	3310; 3314	1.5752	14NilCr14	655M13	36A	12NC15
6		1.6587	17CrNiMo6	820A16		18NCD6
6		1.6657	14NiCrMo134			
6	5515	1.7015	15 Cr 3	523 M 15		12 C 3
6	5132	1.7033	34Cr4	530A32	18B	32C4
6	5140	1.7035	41C r4	530M40	18	42C4
6	5140	1.7045	42Cr41	530 A 40		42 C 4 TS
6	5115	1.7131	16MnCr5	527 M 17		16 MC 5
6		1.7139	16MnCr5			
6	5515	1.7176	55Cr3	527 A 60	48	55 C 3
6	4135; 4137	1.7220	34CrMo4	708 Aa 37		35 CD 4
6	4142	1.7223	41CrMo4			
6	4140	1.7225	42CrMo4	708 M 0		42 CD 4
6		1.7228	55NiCrMoV6G	823M30	33	
6		1.7262	15CrMo5			12 CD 4
6		1.7321	20 mOcR 4			
6	ASTM A182 F-12	1.7335	13CrMo4 4	1501-620Gr27		
6	A 182-F11;12	1.7335	13 CrMo 4 4	1 501 620 Gr. 27		15 CD 4.5
6	ASTM A 182 F.22	1.7380	10CrMo9 10	1501-622gR31; 45		
6	A182 F-22	1.7380	10 CrMo 9 10	1501-622		12 CD 9.10
6		1.7715	14MoV6 3	1503-660-440		
6	A355A	1.8509	41CrAlMo 7	905 M 39	41B	40 CAD 6.12
7	A570.36	1.0038	S235JRG2 (Fe 360 B)	Fe 360 B FU		E 24-2NE
			RSt 37-2	1449 27/23 CR 4360-40 B		
7	3135	1.5710	36NiCr6	640A35		35NC6

		*		# <b>O</b> #	
SS	UNI	UNE	JIS	KS	GOST
2912	16Mo3(KG;KW)	F. 2601 - 16 Mo 3			
-2512	G 20 Mo 5 G 22 Mo5		SCPH 11	SCPH 11	
14 Ni 6 KG;KT	F.2641 - 15 Ni 6				
16NiCr11	15NiCr11	SNC415(H)			
		SNC815(H)			
	14NiCrMo13				
	14NiCrMo131				
			SCr415(H)	SCr415(H)	
	34Cr4(KB)	35Cr4	SCr430(H)	SCr430(H)	
	41Cr4	42Cr4	SCr440(H)	SCr440(H)	
2245	41Cr4	42Cr4	SCr440	SCr440	
2511	16MnCr5	16MnCr5			
2127					
2253			SUP9(A)	SPS 9(A)	
2234					
	41CrMo4	42CrMo4	SNB 22-1	SNB 22-1	
2244					
2512	653M31				
2216		12CrMo4			
2625					
	14CrMo4 5	14CrMo45			
2216		12CrMo4	SCM415(H)	SCM415(H)	
2218	12CrMo9,10	TU.H			
		13MoCrV6			
2940	41CrAlMo7	41CrAlMo7			
1312	Fe 360 B FN	AE 235 B FN;FU Fe 360 B FN; FU			St3ps; sp



уппа :риала	AISI/SAE	Материа	л по DIN	BS	EN	AFNOR
7		1.5755	31 NiCr 14	653 M 31		18 NC 13
7	8620	1.6523	2 NiCrMo2	805M20	362	20 NCD 2
7	8740	1.6546	40 NiCrMo 22	311-Tyre 7		
7	4130	1.7218	25CrMo4	CDS 110		25 CD 4
7		1.7733	24 CrMoV 5 5			20 CDV 6
7		1.7755	GS-45 CrMOV 10 4			
7		1.8070	21 CrMoV 5 11			
8	4142	1.2332	47 CrMo 4	708 M 40	19A	42 CD 4
8	A128 (A)	1.3401	G-X120 Mn 12			Z 120 M 12
8	3435	1.5736	36 NiCr 10			30 NC 11
8	9840	1.6511	36CrNiMo4	816M40	110	40NCD3
8	4340	1.6582	35CrNiM 6	817 M 40	24	35 NCD 6
8		1.7361	32 CeMo12	722 M 24	40B	30 CD 12
8	6150	1.8159	50 CrV 4	735 A 50	47	50CrV4
8		1.8161	58 CrV 4			
8		1.8515	32 CrMo 12	722 M 24	40B	30 CD 12
8		1.8523	39CrMoV13 9	897M39	40C	
9		1.4882	X 50 CrMnNiNbN 21 9			Z 50 CMNNb 21.09
9	3135	1.5710	36NiCr6	640A35	111A	35NC6
9		1.5864	35 niCr 18			
9			31 NiCrMo 13 4	830 m 31		
10	A573-81	1.0144	ST 44-3	4360 43 C		E 28-3
0	A 619	1.0347	DCO3 RSt;RRSt 13	1449 3 CR 1449 2 CR		E
10	M 1015 M 1016 M 1017	1.0401	C15	080 M 15 080 M 15 1449 17 CS		AF 37 C12 XC 18
0		1.0570	ST 52-3	4360 50 B		E 36-3
0	12L13	1.0718	9SMnPb28			S250Pb
0	(12L13)	1.0718	9 SMnPb 28			S 250 Pb

H		*			
SS	UNI	UNE	JIS	KS	GOST
2506	20NiCrMo2	20NiCrMo2	SNCM220(H)	SNCM220(H)	
	40NiCrMo2(KB)	40NiCrMo2	SNCM240	SNCM240	
2225	25CrMo4(KB)	55Cr3	SCM420/430	SCM420/430	
	21 CrMoV 5 11				
	35 NiCr 9				
2244	42CrMo4	42CrMo4	SCM (440)	SCM (440)	
2183	GX120Mn12	F. 8251-AM-X120Mn12	SCMnH 1, SCMn H 11	SCMnH 1, SCMn H 11	110G13L
	36nlcRmO4(KB)	35NiCrMo4	SUP 10	SPS 10	
2541	35NiCrMo6(KB)		SNCM 447	SNCM 447	
2240	30CrMo12	F.124.A			
2230	50CrV4	51CrV4			
2240	32CrMo12	F.124.A			
	36CrMoV12				
			SNC236	SNC236	
2534		f-1270			
1412		10.00	SM 400A;B;C	SM 400A;B;C	
	Fep 02	AP 02			08JU
1350	C15 C16 1 C 15	F.111	S 15 C	SM 15 C	
2132	Fe52BFN/Fe52CFN		SM490A;B;C;YA;YB	SM490A;B;C;YA;YB	
1914	CF9SMnPb28	11SMnPb28			
1914	CF 9 SMnPb 28	11 SMnPb 28	SUM 22L	SUM 22L	

руппа	a AISI/SAE	Материа	n no DIN	BS	EN	AFNOR
териал: 10	a AIOI/OAL	1.0723	15 S 22	210 A 15	LIV	AINOIT
			15 S 20	210 M 15		
10		1.2083				
10	H 11	1.2343	x 38 CrMoV 5 1	BH 11		Z 38 CDV 5
10	H 13	1.2344	X 40 CrMoV 5 1	BH 13		Z 40 CDV 5
10	A 2	1.2363	X100 CrMoV 5 1	BA 2		Z 100 CDV 5
10	D 2	1.2379	X 155 CrVMo 12 1	BD2		Z 160 CDV 12
10	HNV3	1.2379	X210Cr12G	BD2		Z160CDV12
10	D 4 (D 6)	1.2436	X 210 CrW 12	BD6		Z 200 CD 12
10	H 21	1.2581	X 30 WCrV 9 3	BH 21		Z 30 WCV 9
10		1.2601	X 165 CrMoV 12			
10	H 12	1.2606	X 37 CrMoW 5 1	BH 12		Z 35 CWDV 5
10	D3	1.3343	S 6-5-2	BM2		Z200C12
10	N08028	1.4563				Z1NCDU31-27-0
10	ASTM A353	1.5662	X8Ni9	1501-509;510		
10	ASM A353	1.5662	X8Ni9	502-650		9 Ni
10	2517	1.5680	12Ni19	12Ni19		Z18N5
10	2515	1.5680	12 Ni 19			Z 18 N 5
11		1.3202	S 12-1-4-5	BT 15		
11		1.3207	S 10-4-3-10	BT 42		Z130WKCDV
11	T15	1.3243	S 6-5-2-5			KCV
						06-05-05-04-02
11		1.3246	S 7-4-2-5			Z110 WKCDV 07-05-04
11		1.3247	S 2-10-1-8	BM 42		Z110 DKCWV
						09-08-04
11	M 42	1.3249	S 2-9-2-8	BM 34		
11	T 4	1.3255	S 18-1-2-5	BT 4		Z 80 WKCV
		1 00 10	00.5.0	B140		18-05-04-0
11	M 2	1.3343	S6-5-2	BM2		Z 85 WDCV
11	M 7	1.3348	S2-9-2			Z 100 DCWV 09-04-02-

-					
SS	UNI	UNE	JIS	KS	GOST
1922		F.210.F	SUM 32	SUM 32	
2314					
2014	X 37 CrMoV 5 1 KU				
2242	X40CrMoV511KU	F-5318	SKD61	STD61	
2260	X100CrMoV51KU	F-5227	SKD12	STD12	
2310	X165CrMoW12KU	X160CrMoW12I		31012	
	X TOOCHWOW TZRU	X 160CHVIOW 121	10		
2736	V2.50 W 10 1 141				
2312	X215CrW 12 1 KU	F-5213			
	X30WCrV 9 3 KU	F-526	SKD5	STD5	
2310					
	X 35 CrMoW 05 KU	F.537			
2715	X210Cr13KU	X210Cr12	SUH3	STR3	
2584					
	14 Ni 6 KG;KT	XBNiO9			
	X10Ni9	F-2645	SL9N60(53)	SL9N590(520)	
	HS 12-1-5-5	12-1-5-5			
2723	HS 6-5-2-5	6-5-2-5	SKH55	SKH55	
7-4-2-5	HS 7-4-2-5	M 35			
2-10-1-8	HS 2-9-1-8	M 41			
2 10 1 0	2-9-2-8	Witt			
2722	HS 652	F-5604	SKH 51	SKH 51	
2782	HS 292	F-5607			



- руппа териал	AISI/SAE	Материа	л по DIN	BS	EN	AFNOR
11	T 1	1.3355	S 18-0-1	BT 1		Z 80 WCV 18-4-
11	630	1.4548				Z7CNU17-04
11	HNV 3	1.4718	X45CrSi 9 3	401S45	52	Z45CS9
11	422	1.4935	x20 CrMoWV 12 1			
12	403	1.4000	X6Cr13	403 S 17		Z 6 C 13
12		1.4001	X6Cr14			
12	(410S)	1.4001	X7 Cr 13	(403 S 7)		Z 8 C 13
12	405	1.4002	X6CrA12	405S17		Z8CA12
12	405	1.4002	X6 CrAI 13	405 S 17		Z6CA13
12	416	1.4005	X12CrS 13	416 S 21		Z11 CF 13
12	410; CA-15	1.4006	(G-)X10 Cr 13	410S21	56A	Z10 C 13
12	430	1.4016	X8Cr17	Z8C17		430S15
12	430	1.4016	X6 Cr 17	430 S 15	60	Z 8 C 17
12		1.4027	G-X20Cr14	420 C 29		Z20 C 13M
12		1.4027	G-X 20 Cr 14	420 C 29		Z 20 C 13M
12	420	1.4028	X30 Cr 13	420 S 45		Z 30 C 13
12		1.4086	G-X120Cr29	452C11		
12	430 F	1.4104	X12CrMoS17	420 S 37		Z 10 CF 17
12	440B	1.4112	X90 CrMoV 18			
12	434	1.4113	X6CrMo 17	434 S 17		Z 8 CD 17.01
12		1.4340	G-X40CrNi27 4			
12	S31500	1.4417	X2CrNiM0Si19 5			
12	S31500	1.4417	X2 CrNoMoSi 18 5 3			
12		1.4418	X4 CrNiMo16 5			Z6CND16-04-01
12	XM 8 430 Ti 439	1.4510				Z 4 CT 17
12	430tl	1.4510	X6 CrTi 17			Z 4 CT 17
12		1.4511	X 6 CrNb 17(X 6 CrNb 17			Z 4 CNb 17
12	409	1.4512	X 6 CrTi 12 (X2CrTi12)	LW 19 409 S 19		Z 3 CT 12
12		1.4720	X20CrMo13			

+				# <b>!</b>	
SS	UNI	UNE	JIS	KS	GOST
	X45CrSi8	F322	SUH1	STR1	
2301	X6Cr13	F.3110	SUS403	STS 403	
		F8401			
2301					
	X6CrAl13				
2302	X6CrAl13				
2380	X12 CrSC13	F-3411	SUS 416	SUS 416	
2302	X12Cr13	F.3401	SUS 410	SUS 410	
2320	X8Cr17	F.3113			
2320	X8Cr17	F.3113	SUS 430	SUS 430	
2304					
2383	X10CrS17	F.3117	SUS430F	STS 430F	
2325	X8CrMo17		SUS434	STS 434	
2376					
2376					
2387					
	X 6 CrTi 17	F.3115-X 5 CrTi 17	SUS 430 LK	STS 430 LX	08 Ch17T
	X 6 CrNb 17	F.3122-X 5 CrNb 17		STS 430 LX	
	X 6 CrTi 17		SUH 409	STR 409	



Группа атериал	a AISI/SAE	Материа	л по DIN	BS	EN	AFNOR
12	405	1.4724	X10CrA113	403S17		Z10C13
12	430	1.4742	X10CrA118	439S15	60	Z10CAS18
12	HNV6	1.4747	X80CrNiSi20	443S65	59	Z80CSN20.02
12	446	1.4749	x18 cRn 28			
12	446	1.4762	X10CrA124			Z10CAS24
12	EV 8	1.4871	X 53 CrMnNiN 21 9	349 S 54		Z 52 CMN 21.09
12	302		x12 CrNi 18 9	302 S 31		Z 10 CN 18-09
12	429		X10 CrNi 15			
13	420	1.4021	X20Cr13	420S37		Z 20 C 13
13	420	1.4031	X40 Cr 13			Z 40 C 14
13		1.4034	X46Cr13	420 S 45		Z40 C 14
13	431	1.4057	X20CrNi172	431 S 29	57	Z 15 CN 16.02
13		1.4125	X 105 CrMo 17			Z 100 CD 17
13	CA6-NM	1.4313	G-X4 CrNi 13 4	425 C 11		Z 4 CND 13-04 N
13	630	1.4542	X 5 CrNiCuNb 17 4			
			(X5CrNiCuNb 16-4)			
13		1.4544		S. 524 S. 526		
13	348	1.4546	X5CrNiNb 18-10	347 S 31 2 S. 130 2 S. 143/144/145 S.525/527		
13		1.4922	x20cRmV12-1			
13		1.4923	X22 CrMoV12 1			
14	304	1.4301	X 5 CrNi 18 9	304 S 15		Z 5 CN 18.09
14	303	1.4305	X10 CrNiS 18 9	303 S 21	58M	Z 8 CNF 18-09
14	304L	1.4306	X2CrNi18 9	304S12		Z2CrNi18 10
14	304L	1.4306	X2 CrNi 18 10	304 S 11		Z 3 CN 19-11
14	CF-8	1.4308	X6 CrNi 18 9	304 C 15	58E	Z 6 CN 18-10 M
14	301	1.4310	X12CrN i17 7	301 S 21		Z 12 CN 17.07

		*		# <b>*</b>	
SS	UNI	UNE	JIS	KS	GOST
	X10CrA112	F.311			
	X8Cr17	F.3113	SUS430	STS430	
	X80CrSiNi20	F.320B	SUH4	STR4	
2322	X16Cr26		SUH446	STR446	
	X53CrMnNiN21 9		SUH35,SUH36	STR35,STR36	
2330					
2303	14210				
-2304					
	X40Cr14	F.3405	SUS420J2	STS420J2	
2321	X16CrNi16	F.3427	SUS431	STS431	
	X 105 CrMo 17				
2385	(G)X6CrNi304		SCS5	SSC5	
	X 6 CrNiTi 18 11				08Ch 18N12
	X 6 CrNiNb 18 11				
2317	x20cRmOnl 12 01				
2017	X20CHIHOHI 12 01				
0000.0000					
2332;2333	V400*NiC40 00	E 0500	CHECOO	CTCOOO	
2346	X10CrNiS18.09	F.3508	SUS303	STS303	
2352	x2cRnl18 11	F.3503	SCS19	SSC19	
2352	X2CrNi18 11		0110004	070004	
2333	Vac Allie a-		SUS304L	STS304L	
2331	X2CrNi18 07	F.3517			



- руппа териала	AISI/SAE	Материал	п по DIN	BS	EN	AFNOR
14	304 LN	1.4311	X2 CrNiN 18 10	304 S 62		Z 2 CN18.10
14		1.4312	G-X10CrNi18 8	302C25		Z10CN18.9M
14	305	1.4312	X8 CrNi 18 12	305 s 19		
14		1.4332	X2 CrNi 18-8			
14	304	1.4350	X5CrNi18 9	304S15	58E	Z6CN18.09
14	S32304	1.4362	X2 CrNiN 23 4			Z 2 CN 23-04 AZ
14	202	1.4371	X3 CrMnNiN 188 8 7	284 S 16		Z 8 CMN 18- 08-05
14	316	1.4401	X 5 CrNiMo 17 12 2 (X4 CrNiMo 17 -12-2)	316 S 13 316 S 17 316 S 19 316 S 31 316 S 33		Z 3 CND 17 -11-01 Z 6 CND 17-11 Z 6 CND 17-11-02 Z 7 CND 17-11-02 Z 7 CND 17-12-02
14	316L	1.4404	X2 CrNiMo 17 13 2 (X2 CrNiMo 17-12-2) GX 2 CrNiMoN 18-10	316 S 11, 316 S 13 316 S 14, 316 S 31 316 S 42, S.537;31 C 12, T.75, S. 161	;	Z 2 CND 17-12 Z 2 CND 18-13 Z 3 CND 17-11-02 Z 3 CND 17-12-02 FF Z 3 CND 18-12-03 Z 3 CND 19.10 M
14	316LN	1.4406	X2 CrNiMoN 17 12 2 (X2CrNiMoN 18-10)	316 S 61 316 S 63		Z2 CND 17-12 AZ
14	CF-8M	1.4408	GX 5 CrNiMoN 7 12 2 G-X 6 CrNiMo 18 10	316 C 16 (LT 196) ANC 4 B		
14		1.4410	G-X10CrNiMo18 9			Z5CNaD20.12M
14	316 Ln	1.4429	X2 CrNiMo 17 -13-3	316 S 62		Z 2 CND 17-13 Az
14	316L	1.4435	X2 CrNiMo18 14 3	316 S 11;316 S 13 316 S 14;316 S 31 LW 22 LWCF 22		Z 3 CND 17-12-03 Z 3 CND 18-14-03
14	316	1.4436	X 5 CrNiMo 17 13 3 (X4CRNIMO 17-13-3	316 S 19; 316 S 31 316 S 33 LW 23 LWCF 23		Z 6 CND 18-12-03 Z 7 CND 18-12-03

SS	UNI	UNE	JIS	KS	GOST
2371	X2CrNiN18 10		SUS304LN	STS304LN	
2332	X5CrNi18 10	F.3551	SUS304	STS304	
2347	X 5 CrNiMo 17 12	F.3534-X 5 CrNiMo			
		17 12 2	SUS 316	STS 316	
2348	X 2 CrNiMo 17 12	F.3533 - X 2 CrNiMo			
	G-X 2 CrNiMo 19 11	17 13 2 F.3537 - X 2 CrNiMo	SUS 316 L	STS 316 L	
	G-X 2 CHAIMO 19 11	17 13 3	303 310 L	313310 L	
	X 2 CrNiMoN 17 12	F.3542-X 2 CrNiMoN			
	X Z OTTIMOTO TY TZ	17 12 2	SUS316LN	STS316LN	
2343		F.8414-AM-X 7			07 Ch
		CrNiMo 20 10	SCS 14	SSC 14	18N10G2S2MSI
2328					
2375	X 2 CrNiMoN 17 13	F.3543-X 2 CrNiMoN 17 13 3	SUS 316 LN	STS 316 LN	
2375	X 2 CrNiMoN 17 13	F.3533-X 2 CrNiMo 17 13 2	SUS 316 L	STS 316 L	O3 Ch 17N14M3
		17 10 2	303 310 L	3133101	03 011 1711141010
2343	X 5 CrNiMo 117 13	F.3543-X 5 CrNiMo 17 12 2	SUS 316	STS 316	
	X 8 cRnImO 17 13	F.3538-X 5 CrNiMo 17 13			



- руппа териал	a AISI/SAE	Материа	ил по DIN	BS	EN	AFNOR
14	317L	1.4438	X2 CrNiMo 18 16 4 (X2CrNiMo 18-15-4)	317 S 12		Z 2 CND 19-15-04 z 3 cnd 19-15-04
14	(s31726)	1.4439	X2 CrNiMoN 17 13 5			Z 3 CND 18-14-06 AZ
14		1.4440	X 2 CrNiMo 18 13			
14	317	1.4449	X5 CrNiMo 17 13 3	317 S 16		
14	329	1.4449 1.4460	X 4 CrNiMo 27 5 2 (X3CrNiMo27-5-2)			(Z 3 CND 25-07 Az) Z 5 CND 27-05 Az
14	329	1.4460	X8CrNiMo27 5			
14		1.4462	X2CrNiMoN22 5 3	318 S 13		Z 3 CND 22-05 Az (Z 2 CND 24 -08 Az ) (Z 3 CND 25-06-03 A
14		1.4500	G-X7NiCrMoCuNb25 20			23NCDU25.20M
14	17-7PH	1.4504		316S111		
14	443 444	1.4521	X2CrMoTi18-2	317 S 16		
14	UNS N 08904	1.4539	X1NiCrMoCuN25-20-5			Z 2 NCDU 25-20
14	CN-7M	1.4539	(G-)X1 NiCrMoCu 25 20 5			Z1 NCDU 25-02 M
14	321	1.4541	Z 6 CrNiTi 18-10	321 S 31 321 S 51 (101 LW 24 LWCF 24	0;1105)	Z 6 CNT 18-10
14	630	1.4542	X5 CrNiCuNb 17 4 (X5 CrNiChNb 16-4)			Z 7 CNU 15-05 Z 7 CNU 17-04
14	17-4PH	1.4542				Z7CNU17-04
14	S31254	1.4547	X1 CrNiMoN 20 18 7			
14	17-4PH	1.4548				Z7CNU17-04
14	347	1.4550	X6 CrNiNb 18 10	347 S 17	58F	Z 6 CNNb 18.10
14		1.4552	G-X7CrNiNb18 9			Z4CNNb19.10M
14	17-7PH	1.4568		316S111		
14	316tTi	1.4571	X6 CrNiMoTi 17 12 2	320 S 31		Z 6 CNDT 17-12002
14		1.4581	G-X 5 CrNiMoNb	318 C 17		Z 4 CNDNb 18.12 M
14	318	1.4583	X 10CrNiMoNb 18 12	303 S 21		Z15CNS20.12



H				# <b>O</b> #	
SS	UNI	UNE	JIS	KS	GOST
2367	X2CrNiMo18 16	f.3539-x 2 cRnImO 18 16 4	SUS317L	STS317L	
	X 5 CrNiMo 18 15		SUS 317	STS 317	
2324		F.3309-X 8 CrNiMo 17 12 2 F.3552-X 8 CrNiMo 18 16 4	SUS 329 J 1	STS 329 J 1	
2377			SUS 329 J3L	STS 329 J3L	
	Z8CNA17-07	X2CrNiMo1712			
2326		F.3123-X 2 CrMoTiNb 18 2	SUS 444	STS 444	
2562					
2564					
2337	X 6 CrNiTi 18 11	F.3523 - X 6 CrNiTi 18 10	SUS 321	STS 321	06Ch18N10T 08Ch18N10T 09Ch18N10T 12Ch18N10T
			SCS 24 SUS 630	SSC 24 STS 630	
2378					
2338	X6CrNiNb18 11	F.3552	SUS347	STS347	
	Z8CNA17-07	X2CrNiMo1712			
2350					
	x15cRnlsl2 12				



/ппа риала	AISI/SAE	Материа	ал по DIN	BS	EN	AFNOR
4		1.4585	G-X7CrNiMoCuNb18 18			
4		1.4821	X20CrNiSi25 4			Z20CNS25.04
4		1.4823	G-X40CrNiSi27 4			
4	309	1.4828	X15CrNiSi20 12	309 S 24	58C	Z15CNS20.12
4	309S	1.4833	X6 CrNi 22 13	309 S 13		Z 15 CN 24-13
4	310 S	1.4845	X12 CrNi 25 21	310S24		Z 12 CN 25-20
4	321	1.4878	X6 CrNiTi 18 9	32 1 S 20	58B	Z 6 CNT 18-12 (B)
4	Ss30415	1.4891	X5 CrNiNb 18 10			Z20CNS25.04
4	S30815	1.4893	X8 CrNiNb 11			
4	304H	1.4948	X6 CrNi 18 11	304 S 51		Z 5 CN 18-09
4	660	1.498	X5 NiCrTi 25 15			Zz 8 nctv 25-15 b ff
4			X5 NiCrN 35 25			
4	S31753		X2 CrNiMoN 18 13 4			
4			X2 CrNiMoN 25 22 7			
5	CLASS20	0.6010	GG10			Ft10D
5	A48-20B	0.6010	GG-10			Ft 10 D
5	NO 25 B	0.6015	GG 15	Grade 150		Ft 15 D
5	CLASS25	0.6015	GG 15	Grade 150		Ft 15D
5	A48 25 B	0.6015	GG 15	Grade 150		Ft 15 D
5	A48-30B	0.6020	GG-20	Grade 220		Ft 20 D
5	NO 30 B	0.6020	GG 20	Grade 220		Ft 20 D
5	A436 Type 2	0.6660	GGL-NiCr202	L-NiCuCr202		L-NC 202
5	60-40-18	0.7040	GGG 40	SNG 420/12		FCS 400-12
5	No 20 B		GG 10			Ft 10 D
6	CLASS30	0.6020	GG 20	Grade 220		Ft 20D
6	CLASS45	0.6030	GG 30	Grade 300		Ft 30D
6	A48-45 B	0.6030		Grade 350		Ft 30D
6	A48-50	0.6035	GG-35	Grade 350		Ft 35 D
6	A48-60 B	0.6040	GG40	Grade 400		Ft 40 D
6	100/70/03	0.7070	GGG-70	SNG700/2		FGS 700-2

			•	**************************************	
SS	UNI	UNE	JIS	KS	GOST
	X6CrNiMoTi17 12				
		F.8414	SCS17	SSC17	
2361	X6CrNi25 20	F.331	SUH310	STR310	
2337	X6CrNiTi18 11	F.3553	SUS321	STS321	
2372					
2368					
2333					
2570					
110	G 10				
0110-00					
0115-00	G 15	FG 15	FC150	GC150	
115	G 15	FG 15			
01 15-00	G 14	FG 15			
0120-00			50000		
120	G 20		FC200	GC200	
0523-00	00.070.47	505.00.47	EOD 400	000,400,40,45	
0717-02	GS 370-17	FGE 38-17	FCD400	GCD400-18,15	
110	0.00	FC 00	FC100	GC100	
120	G 20	FG 20	F0000	00000	
130	G 30	FG 30	FC300	GC300	
01 30-00	C 25	FC 25	FCOFO	00050	
135	G 35	FG 35	FC350	GC350	
140	000 70	000 70	FCD700	000700 0	
07 37-01	GGG 70	GGG 70	FCD700	GCD700-2	



уппа ериала	AISI/SAE	Материа	ал по DIN	BS	EN	AFNOR
16		1.4829	X 12 CrNi 22 12			
17		0.7033	GGG35.3			
17		0.7033	GGG-35.3	350/22 L 40		FGS 370/17
17	60-40-18	0.7040	GGG-40	SNG 420/12		FGS 400-12
17	60/40/18	0.7043	GGG-40.3	370/7		FGS 370/17
17	80-55-06	0.7050	GGG50	SNG500/7		FGS 500/7
17	65-45-12	0.7050	GGG-50	SNG 500/7		FGS 500-7
17		0.7652	GGG-NiMn 13 7	S-NiMn 137		S-Mn 137
17	A43D2	0.7660	GGG-NiCr 20 2	Grade S6		S-NC 202
17			GGG 40.3	SNG 370/17		FGS 370-17
18	A48-40 B	0.6025	GG25	Grade260		Ft 25 D
18		0.7060	GGG60	SNG600/3		FGS600-3
18	80/55/06	0.7060	GGG-60	600/3		FGS 600/3
18	A48 40 B					
19		0.8055	GTW55			
19	32510	0.8135	GTS-35-10	B 340/12		MN35-10
19	A47-32510	0.8135	GTS-35-10	B 340/2		Mn 35-10
19	A220-40010	0.8145	GTS-45-06	P 440/7		Mn 450-6
19			GTS-35	B 340/12		
19				8 290/6		MN 32-8
19	32510		GTS-35	B340/12		MN 35-10
20		0.8035	GTM-35	W340/3		MB35-7
20		0.8040	GTW-40	W410/4		MB40-10
20		0.8045				
20		0.8065	GTMW-65			
20	A220-50005	0.8155	GTS-55-04	P 510/4		Mn 550-4
20	50005	0.8155	GTS-55-04	P 510/4		MP 50-5
20	70003	0.8165	GTS-65-02	P 570/3		Mn 650-3
20	90001	0.8170	GTS-70-02	P 690/2		Mn 700-2
20	A220-90001	0.8170	GTS-70-02			Mn 700-2

lacksquare		*		11011	
SS	UNI	UNE	JIS	KS	GOST
0717 15					
0717-15					
0717-15					
0717-02					
0717-15	000 50				
0727-02	GGG 50		EOD 500	000 500 7	
	0727-02		FCD 500	GCD 500-7	
0772-00					
0776-00					
0717-12					
	0.05	FO 05	F00F0	00050	
125	G 25	FG 25	FC250	GC250	
07 32-03	GGG 60	GGG 60	FORMO	0.000000	
0727-03			FCD600	GCD600-3	
		OTW ==			
		GTW 55			
810		GTS 35			
0815-00					
	0852-00	GMN 45			FCMW370
0810-00					
814			AC4A	AC4A	
08 15			FCMW330	FCMW330	
852		GTM 35			
	GTB40	GTM 40			
	GMB45	GTM 45			
		GTM 65			
0854-00					
0854-00	GMN 55		FCMP490	PMC 490	
0856-00	GMN 65		FCMP590	PMC 590	



AISI/SAE	Матери	ал по DIN	BS	EN	AFNOR
AISI/SAE	0.8170	GTS-70-02	IP 70-2		
1022					
1518	1.1133	20Mn5	120 M 19		20 M 5
1035	1.1183	Cf 35 (C35G)	080 A 35		XC 38 H 1 TS
400 10		GTS-45	P440/7		
70003		GTS-65	P 570/3		MP 60-3
Al99	3.0205				
1000	3.0255	Al99.5	L31/34/36		A59050C
	3.3315	AIMg1			
	3.1325	AlCuMg 1			
	3.1655	AlCuSiPb			
	3.2315	AlMgSi1			
7050	3.4345	AlZnMgCuO,5	L 86		AZ 4 GU/9051
	3.2381	G-AISi 10 Mg			
	3.2382	GD-AISi10Mg			
	3.2581	G-AlSi12			
	3.3561	G-AIMg 5			
ZE 41	3.5101	G-MgZn4sE1Zr1	MAG 5		
EZ 33	3.5103	MgSE3Zn27r1	MAG 6		G-TR3Z2
AZ 81	3.5812	G-MgAl8Zn1	NMAG 1		
AZ 91	3.5912	G-MgAl9Zn1	MAG 7		
	2.1871	G-AICu 4 TiMg			
	3.1754	G-AICu5Ni1,5			
	3.2163	G-AlSi9Cu3			
4218 B	3.2371	G-AISi 7 Mg			
SC64D	3.2373	G-AISI9MGWA			A-S7G
	3.2373	G-AISi 9 Mg			
QE 22	3.5106	G-MgAg3SE2Zr1	mag 12		
GD-AISI12		G-ALMG5	LM5		A-SU12
24 A360.2	3.2383	G-AlSi0Mg(Cu)	LM9		

F				# <b>*</b>	
SS	UNI	UNE	JIS	KS	GOST
0862-00	GMN 70	5.12	FCMP690	PMC 690	0.00.
0864-00					
2132	G 22 Mn 3				
	20 Mn 7	F.1515-20 Mn 6	SMnC 420	SMnC 420	
1572	C 36; C 38	1.1010 20 1411 0	S 35 C	SM 35 C	35
08 52	0 30, 0 30		0 00 0	OW 55 C	00
			E014DE 40	D140 540	
858			FCMP540	PMC 540	
811-04					
4231			C4BS	C4BS	
4252					
4253					
7230					

уппа ериала	AISI/SAE	Материа	ал по DIN	BS	EN	AFNOR
-24	A356-72			2789;1973		NF A32-201
-24	356.1			LM25		
-24	A413.2		G-AlSi12	LM6		
-24	A413.1		G-AlSi 12 (Cu)	LM20		
-24	A413.0		GD-AlSi12			
-24	A380.1		GD-AlSi8Cu3	LM24		
26	C93200	2.1090	G-CuSn 7 5 pb			U-E 7 Z 5 pb 4
26	C83600	2.1096	G-CuSn5ZnPb	LG 2		
26	C83600	2.1098	G-CuSn 2 Znpb			
26	C23000	2.1182	G-CuPb15Sn	LB1		U-pb 15 E 8
26	C93800	2.1182	G-CuPb15Sn			Uu-PB 15e 8
27		2.0240	CuZn 15			
27	C27200	2.0321	CuZn 37	cz 108		CuZn 36, CuZn 37
27	C27700	2.0321	CuZn 37	cz 108		CuZn 36, CuZn 37
27		2.0590	G-CuZn40Fe			
27	C 86500	2.0592	G-CuZn 35 AI 1	U-Z 36 N 3		HTB 1
27	C 86200	2.0596	G-CuZn 34 AI 2	HTB 1		U-Z 36 N 3
27	C 18200	2.1293	CuCrZr	CC 102		U-Cr 0.8 Zr
28		2.0060	E-Cu57			
28		2.0375	CuZn36Pb3			
28	C 94100	2.0596	G-CuZn 34 AI 2	HTB 1		U-Z 36 N 3
28	C 63000	2.0966	CuAl 10 Ni 5 Fe 4	Ca 104		U-A 10 N
28	B-148-52	2.0975	G-CuAl 10 Ni			
28	C 90700	2.105	G-CuSn 10	CT1		
28	C 90800	2.1052	G-CuSn 12	pb 2		UE 12 P
28	C 81500	2.1292	G-CuCrF 35	CC1-FF		
28		2.4764	CoCr20W15Ni			
31	N 08800	1.4558	X 2 NiCrAITi 32 20	NA 15		
31	N 08031	1.4562	X 1 NiCrMoCu 32 28 7			



+		**			
SS	UNI	UNE	JIS	KS	GOST
10.11			45050	AFOFOR	
4244 4261			A5052	A5052P	
4260			ADC12	ALDC12	
4247			A6061	A6061P	
4250			A7075	A7075P	
1200			711070	711 07 01	
	C 2700				
	C 2720				

иппа риала	AISI/SAE	Материал	no DIN	BS EN	AFNOR
1	N 08028	1.4563	X 1 NiCrMoCuN 32 27 4		
1	N 08330	1.4564	X 12 NiCrSi 36 16	NA 17	Z 12 NCS 35.16
1	330	1.4564	X12 NiCrSi 36 16	NA 17	Z 12 NCS 37.18
1		1.4865	G-X40NiCrSi38 18	330 C 40	
1		1.4958	X 5 NiCrAlTi 31 20		
1	AMS 5544	LW2.4668	NiCr19NbMo		NC20K14
2		1.4977	X 40 CoCrNi 20 20		Z 42 CNKDWNb
3	Monel 400	2.4360	NiCu30Fe	NA 13	NU 30
3	5390A	2.4603			NC22FeD
3	Hastelloy C-4	2.4610	NiMo16cR16Ti		
3	Nimonic 75	2.4630	NiCr20Ti	HR 5,203-4	NC 20 T
3		2.4630	NiCr20Ti	HR5,203-4	NC20T
3	Inconel 690	2.4642	NiC29Fe		Nnc 30 Fe
3	Inconel 625	2.4856	NiCr22Mo9Nb	NA 21	NC 22 FeDNb
3	5666	2.4856	NiCr22Mo9Nb		Inconel 625
3	Incoloy 825	2.4858	NiCr21Mo	NA 16	NC 21 Fe DU
4	Monel k-500	2.4375	NiCu30 Al	NA 18	NU 30 AT
4	4676	2.4375	NiCu30Al	3072-76	
4		2.4631	NiCr20TiAI	Hr40;601	NC20TA
4	Inconel 718	2.4668	NiCr19FeNbMo		NC 19 Fe Nb
4	Inconel	2.4694	NiCr16fE7TiAl		
4		2.4955	NiFe25Cr20NbTi		
4	5383	LM2.4668	NiCr19Fe19NbMo	HR8	NC19eNB
4	5391	LW2 4670	S-NiCr13A16MoNb	3146-3	NC12AD
4	5660	LW2.4662	NiFe35Cr14MoTi		ZSNCDT42
4	5537C	LW2.4964	CoCr20W15Ni		KC20WN
4	AMS 5772		C0Cr22W14Ni		KC22WN
5	Inconel X-750	2.4669	NiCr15Fe7TiAl		NC 15 TNb A
5	Hastelloy B	2.4685	G-NiMo28		
5	Hastelloy C	2.4810	G-NiMo30		

+					
SS	UNI	UNE	JIS	KS	GOST
2584					
			SUH330	STR 330	
	XG50NiCr39 19		SCH15	HRSC 15	



па иала АІ	SI/SAE	Материал	по DIN	BS	EN	AFNOR
AMS 50	399	2.4973	NiCr19Co11MoTi			NC19KDT
5		3.7115	TiAl5Sn2			
R 5025	0	3.7025	Ti 1	2 TA 1		
R 5225	0	3.7225	Ti 1 pd	TP 1		
AMS 50	397	LW2 4674	NiCo15Cr10MoAlTi			
7		3.7124	TiCu2	2 TA 21-24		
7 R 5462	0	3.7145	TiAl6Sn2Zr4Mo2Si			
7		3.7165	TiAl6V4	TA 10-13;TA 28		T-A 6 V
7		3.7185	TiAl4Mo4Sn2	TA 45-51; TA 57		
1		3.7195	TiAl 3 V 2.5			
7			TiAl4Mo4Sn4Si0.5			
AMS R	54520		TiAl5Sn2.5	TA14/17		T-A5E
' AMS R	56400		TiAl6V4	TA10-13/TA28		T-A6V
AMS R	56401		TiAl6V4ELI	TA11		
W 1		1.1545	C105W1	BW 1A		Y1105
W210		1.1545	C105W1	BW2		Y120
3		1.2762	75 CrMoNiW 6 7			
440C		1.4125	X105 CrMo 17			Z 100 CD 17
3		1.6746	32 nlcRmO 14 5	832 M 31		35 NCD 14
Ni- Har	d 2	0.9620	G-X 260 NiCr 4 2	Grade 2 A		
Ni- Har	d 1	0.9625	G-X 330 Ni Cr 4 2	Grade 2 B		
Ni- Har	d 4	0.9630	G-X 300 CrNiSi 9 5 2			
)		0.9640	G-X 300 CrMoNi 15 2 1			
A 532 II	I A 25% Cr	0.9650	G-X 260 Cr 27	Grade 3 D		
A 532 II	I A 25% Cr	0.9655	G-X 300 CrNMo 27 1	Grade 3 E		
		1.2419	105 WCr 6	105WC 13		
310		1.4841	X15 CrNiSi 25 20	314 S31		Z 15 CNS 25-20
		0.9635	G-X 300 CrMo 15 3			
		0.9645	G-X 260 CrMoNi 20 2 1			
		0.9655	G-X 300 CrNMo 27 1			

		*		<b>***</b>	
SS	UNI	UNE	JIS	KS	GOST
1880	C100KU	F-5118	SK3	STC 105(STC3)	
2900	C120KU	CF.515	SUP4	SPS 4	
	0512-00				
	0513-00				
	0466-00				
	0.400.00				
		107 WCr 5 KU			

Обозначение	Страница	Обозначение	Страница
14D-F45XN	E62-E63	ATHSNR/L	A175
14D-F45XNW	E64	ATSKNR/L	A176
14D-F45XNWQC	E65	ATSKNR/L 0904	A176
2F	E133-E134	ATTFNR/L 1304	A177
2FB	E174	ATTUNR/L 1304	A178
2PLBNR/L	A120	ATWLNR/L	A179
2PLLNR/L	A120	ATWLNR/L 0604	A179
2S-TE90AP09	E105-E106	ADBH 30XD16	H55
2S-TEFAP09	E149	AEB 2S	F99
2S-TFM90AP	E41	AEB 3M	F99
3F	E135	AES 2	F100
3FB	E174	AES 2R	F105
3P TE90	E97-E100	AES 2XL	F101
3P TF90	E34-E36	AES 3	F102
3РНТ	E175	AES 3ML	F103
3РКТ	E175	AES 3R	F106
6N TE90	E101-E102	AES 3XL	F104
6N TF90	E37-E38	AMB 2T	F50
6NGU	E176	AMF 2T	F51
6RBE 50-M	E177	AMF 4T	F52
		AMR 2T-R	F53
A		AMR 4T-R	F54
		AMR 6T-R	F55
AHCLNR/L 0904	A143	AMT MBMT	H28
AHCLNR/L 1205	A143	ANHX	E178
AHDUNR/L 1305	A144	ANHX 1607 ANR-M	E177
AHDZNR/L 1305	A145	ANMX	E178
AHSKNR/L 0904	A146	AOMT 060204-C45	D131
AHTFNR/L 1304	A147	APCT	E179-E180
AHTUNR/L 1304	A148	APKT	E179-E181
AHWLNR/L 0604	A149	APKTHF	E182
ASCLPR/L	A157	AWE 3	F108
ASDLNR/L	A158	AWE 3ML	F108
ASDQNR/L	A159	AXCT	E182
ASDUNR/L	A160	AXMT	E182
ASTFPR/L	A164	AXMTHF	E182
ASVLNR/L	A167		
ASVPNR/L	A167	В	
ATCLNR/L	A172		
ATCLNR/L 0904	A172	ВВН	H55
ATDUNR/L	A173	BBH D16x53	H52
ATDUNR/L 1305	A173	BBSTDR-20DT	D46
ATDZNR/L 1305	A174	BCLCR/LSH	A47
			7



Обозначение	Страница	Обозначение	Страница
	оприници.		Отраница
BDJCR/LSH	A48	ВТВМВ	H12
BDNCNSH	A48	BTDI	D117
BES 2T	F64	ВТДО	D117
BES 4T	F64	BTSSE1	D112
BHC MB	H36	BTSSE2/SE4	D112
BHE MB	H38	BTSE	D115-D116
BHE MBH	H39	BTSI	D113-D114
ВНЕН	H56	BTSO	D116
BHF L200	H58	BVJBR/LSH	A49
BHF MB	H44-H45	BVJCR/LSH	A49
BHF MBBL	H44		
BHF MBRV	H44	C	
BHFH	H56		
BHR MB	H30	CB4340	G112
BLANK MB	H29	CEM	G104-G105
BLMP	E183-E184	CEME	G106
BNMX 150720R/L HF	A264	CER	G102-G103
BTAD	G86	CERM	G103
BTDC	G87	CFM	G109
BTEM	G72-G73	CHCLNR/L	A130
BTEME	G74	CHDJNR/L	A130
BTER	G65-G66	CHSSNR/L	A131
BTERBIN	G64	CHTGNR/L	A131
BTERCLICK-IN	G67	CHTJNR/L	A131
BTERSHORT	G67	CMB	H11
BTFM	G82	CODP	G111
BTFMA	G84	CSCLCR/L (Boring Bar)	A156
BTMB	H12	CSCLCR/L (C-Adapter)	A136
BTMT	G85	CSDJCR/L	A136
BTMTDRW	G86	CSEMC	G107
BTODP	G88	CSEMC	G108
BTSCA	G79	CSRDCN	A137
BTSEM	G80	CSRKIN	G110
BTSEMC	G81	CSTFCR/L	A163
BTSEMC	G83	CSTFPR/L	A165
BTSRK	G76	CSTGCR/L	A137
BTSRKIN	G75	CSTJCR/L	A137
BTTC	G70	CSTUBR/L	A166
BTTHC	G77-G78	CSVJBR/L	A138
BTTMC	G71	CSVVBN	A138
BTTSK	G68	CSWUBR/L	A171
BTADE4	D111	CTCHN	B30
BTASE2/SE4	D109-D110	CTCHPN	B31



Обозначение	Страница	Обозначение	Страница
CTCLNR/L	A132	CNGA	<b>A27</b> 1
CTDJNR/L	A132	CNGAWZ-LS/LN	A284
CTDR-20DT	D46	CNGGML	A212
CTSDNN	A133	CNGN	A271
CTSSNR/L	A133	CNGXCH	A272
CTTGNR/L	A134	CNHX	E184
CTTJNR/L	A134	CNMA	A212
CTVJNR/L	A134	CNMA 0904	A212
CTWLNR/L	A135	CNMA 120408 WT	A212
CAB	G121	CNMALN-10	A284
CABC	G121	CNMALS/LN	A284
CABSEMC	G123	CNMD 250924 HD	A212
CATMMB	Н8	CNMD 250924 HZ	A213
CC MBER	H23	CNMDHT	A213
CCETL/R-GF	A247	CNMDHY	A213
CCETL/R-GW	A247	CNMG	A214
CCGTCB	A291	CNMG 0904	A214
CCGTFL	A263	CNMG 0904EA	A214
CCGTL/R-FF	A247	CNMG 0904EM	A21
CCGTSA	A248	CNMG 0904FG	A210
CCGWLN-7	A291	CNMG 0904FM	A216
CCGWLS	A291	CNMG 0904FT	A210
CCMTFA	A248	CNMG 0904MM	A217
CCMTFG	A248	CNMG 0904MT	A217
CCMTMT	A248	CNMG 0904PC	A218
CCMTPC	A248	CNMGCE	A272
CCMTWT	A248	CNMGEA	A214
CDP ER	G123	CNMGEM	A215
CDPSRK	G122	CNMGET	A215
CEM	F79	CNMGFA	A215
CEM 2	F78	CNMGFC	A21
CEM 2C120	F79	CNMGFG	A216
CEM 2C60	F78	CNMGKT	A216
CENC	D142	CNMGMC	A216
CFM 4M	F76	CNMGML	A216
CFRA45	D58	CNMGMP	A217
CHA45	H34	CNMGMT	A217
CHR MB	H21	CNMGPC	A218
CHS MB	H21	CNMGRT	A218
CJA	G149	CNMGSF	A218
CKJNR/L	A50	CNMGWS	A218
CKNNR/L	A50	CNMGWT	A219
CMR	G149	CNMMEH	A219



A250 A250 A251 A251 F110 F109 F111 F111 H18 G99 G99 G93 G91 G94
A251 A251 F110 F109 F111 F111 H18 G99 G99 G93
A251 F110 F109 F111 F111 H18 G99 G99 G93 G91
F110 F109 F111 F111 H18 G99 G99 G93
F109 F111 F111 H18 G99 G99 G93
F111 F111 H18 G99 G99 G93
F111 H18 G99 G99 G93 G91
H18 G99 G99 G93 G91
G99 G99 G93 G91
G99 G93 G91
G93 G91
G91
G94
G97
G98
G95
G96
G92
G31
G31
G18-G19
G20
G11-G12
G10
G13
G13
G27
G29
G30
G32
G28
G24
G25
G26
G22
G21
G16
G23
G17
G14
F109



Обозначение	Страница	Обозначение	Страница
DNGA	A273	EASYLOCK	G168
DNGGML	A273	EBE 2L	F83
DNGN	A273	EBE 2M	F82
DNGXCH	A273	EBE 2VI	F81
DNMA	A273	ECCENTER SLEEVE	D47
DNMALN-10	A221	ECEM 2	F80
DNMALS/LN	A285	ECEM 4	F80
DNMG	A203	EFE 2L	F86
DNMG 1305	A221	EFE 2M	F85
DNMG 1305EA	A221	EFE 2S	F84
DNMG 1305EM	A222	EFE 3M	F88
DNMG 1305FG	A223	EFE 3S	F87
DNMG 1305FM	A223	EFE 4L	F91
DNMG 1305FT	A223	EFE 4M	F90
DNMG 1305MM	A224	EFE 4S	F89
DNMG 1305MT	A224	EMH MB	H22
DNMG 1305PC	A224	ENGN	A274
DNMG 150608 CE	A273	ER TAP	G137
DNMGEA	A222	ERAPI RDM	C57
DNMGEM	A222	ERBUT	C59
DNMGET	A222	EREL	C59
DNMGFA	A222	ERISOM	C31
DNMGFC	A222	ERMJ	C50
DNMGFG	A223	ERNPTM	C43
DNMGKT	A223	ERNPTF	C44
DNMGL/R-VF	A225	ERPG	C52
DNMGMC	A223	ERSEAL	G134
DNMGML	A224	ERSEALJET2	G135
DNMGMP	A224	ERSPR	G132
DNMGMT	A224	ERSPRAA	G133
DNMGPC	A225	ERSRF	G154
DNMGRT	A225	ERSRK	G150-G151
DNMGWS	A225	ERSRKJET2	G152-G153
DNMGWT	A225	ERUNM	C36
DNUX 1305R/L	A225	ERWM	C41
DTCR	D120	ER/L55	C25
DTCRF	D121	ER/L60	C26
DTCS	D120	ER/LABUT	C54
		ER/LACME	C47
E		ER/LAPI	C58
		ER/LAPI RD	C56
ESCLPR/L	A158	ER/LBSPT	C45
ESTFPR/L	A165	ER/LISO	C27-C28



Osaciona	Странца	Oscarione	Строини
Обозначение	Страница	Обозначение	Страница
ER/LNPT	C42	HCLNR/LCA 0904	A197
ER/LRND	C55	HCLNR/LRS	A56
ER/LSAGE	C53	HDJNR/L1305	A57
ER/LSTACME	C46	HDNNR/L1305	A57
ER/LTR	C51	HDQNR/L1305	A58
ER/LUN	C32-C33	HDUNR/L1305	A58
ER/LUNJ	C48	HEPCLNR/L	A184
ER/LW	C37	HEPDUNR/L	A184
EROH	G136	HEPTFNR/L	A185
EXMB	H19	HESCLCR/L	A186
		HESDQCR/L	A186
F		HESDUCR/L	A187
		HESVUBR/L	A187
FITBORE BTEM	G69	HEATING HANDLE	G170
FITBORE DIN69871EM	G15	HES 2LT	F67
FITBORE HSK AEM	G42	HES 2LT-R	F72
FSM 4M	F77	HES 2T-R	F71
		HES 2XLT	F69
G		HES 4LT	F68
		HES 4LT-R	F74
GFI MTER	G126	HES 4T-R	F73
GFI STER	G126	HES 4XLT	F70
GTI BTER	G70	HES 6T	F95
GTI DIN69871ER	G16	HFDT2	D122-D123
GTI ERST	G125	HFM 2	F75
GTIN ERDIN	G155	HFM 4	F75
GTIN ERISO	G156	HMF 2	F49
GTIN ERJIS	G155	HNCX	E185
GYRO DIN69880ER	G129	HNGXCH	A274
GYRO STER	G128	HNHX	E186
		HNMGGU	A226
H		HNMGSU	A226
		HNMX	E185
HBXNR/L	A118	HSB 2	F16-F19
HCBNR/L	A54	HSB 2S	F21
HCBNR/L0904	A54	HSB 2S6	F20
HCBNR/LRS	A54	HSB 2M	F22
HCFNR/LCA 0904	A197	HSB 4M	F23
HCGNR/LCA 0904	A197	HSBNR/L 25/32	A59
HCKNR/L	A55	HSBNR/L 40/50	A119
HCKNR/L0904	A55	HSBNR/L0904	A59
HCLNR/L	A56	HSDNN 25/32	A59
HCLNR/L0904	A56	HSDNN 40/50	A119



Обозначение	Страница	Обозначение	Страница
HSDNN0904	A59	HSRNR/LCA 0904	A198
HSF 2	F24-F27	HSSNR/L0904	A60
HSF 4	F28-F29	HSSNR/LCA 0904	A199
HSF 6M	F30	HSYNR/LCA 0904	A199
HSF 6XLT	F31	HTFNR/L1304	A61
HSK AB16MN	G61	HTFNR/LCA 1304	A200
HSK AEM	G43	HTGNR/L1304	A61
HSK AEME	G44	HTGNR/LCA 1304	A200
HSK AER	G36-G37	HTSNR/LCA 1304	A201
HSK AERBIN	G35	HTTNR/LCA 1304	A201
HSK AERCLICK-IN	G41	HTWNR/LCA 1304	A201
HSK AERM	G39	HWLNR/L0604	A62
HSK AERSHORT	G40		
HSK AFM	G57		
HSK AMB	H9		
HSK AMT	G58	IHAXF	H51
HSK AODP	G59	IHAXFAVI	H53
HSK ASEM	G54	IHAXFE	H53
HSK ASEMC	G55	IHBR	H32
HSK ASEMC	G56	IHCR	H32
HSK ASRK	G48	IHFF	H54
HSK ASRKIN	G45-G46	IHFFC	H37
HSK ATHC	G51	IHPR	H32
HSK ATMC	G42	IHRF	H54
HSK ATSK	G41	IHRFBW	H59
HSK EER	G38	IHRFC	H37
HSK EERBIN	G35	IHRFCH	H60
HSK EMB	H10	IHSR	H32
HSK EODP	G60	IHSRBW	H35
HSK ESEM	G53	IHSRC	H37
HSK ESRK	G49-G50	IHSRCH	H33
HSK ETHC	G52	IHWF 14E	H54
HSK FMB	H10	IMXMZ MB	H11
HSK FMER	G40	IND	G169
HSK FMSEM	G57	IRAPI RDM	C57
HSK FMSRKIN	G47	IRBUT	C59
HSKNR/L	A60	IREL	C59
HSKNR/L0904	A60	IRISOM	C31
HSKNR/LCA 0904	A198	IRMJ	C50
HSR 2	F32-F38	IRNPTM	C43
HSR 4	F39-F42	IRUNM	C36
HSR 6	F43	IRWM	C41
HSR 6M	F44	IR/L55	C25



Обозначение	Страница	Обозначение	Страница
IR/L60	C26	KIT SHRINKIN	G170
IR/LABUT	C54	KIT STERF	G142
IR/LACME	C47	KIT STERM	G142
IR/LAPI	C58	KNUXL/R11	A226
IR/LAPI RD	C56	KNUXL/R12	A226
IR/LBSPT	C45		
IR/LISO	C29-C30		
IR/LNPT	C42	-	
IR/LNPTF	C44	LM45SD	E80
IR/LPG	C52	LM45SE	E81
IR/LRND	C55	LM60SC	E57-E60
IR/LSAGE	C53	LM75SP	E55
IR/LSTACME	C46	LM90SE	E51
IR/LTR	C51	LM90TP	E50
IR/LUN	C34-C35	LNMM 401224R/L-HX	A265
IR/LUNJ	C49	LNMX 191940 TWF	A267
IR/LW	C38-C39	LNMX 301940 TWR	A267
ISOMB	H13	LNMX 501432 HD	A266
ISOMMB	H13	LNMX 501432 HY	A266
		LNMXTWM	A267
K		LNU 6688 T	A278
KIT BHE MB32-32x53 H	H62	M	
KIT BHE MB50-50x60 H	H63		
KIT BHE MB50-50x80	H61	MCLAMP SCREW	G163
KIT BHE MB63-63x89	H61	MB CLAMP	H68
KIT BHE MB80-80x104	H62	MBA	G164
KIT BHF MB50-50 6-108	H65	MDJNR/L	A63
KIT BHF MB50-50 BL	H65	MDNNN	A63
KIT BHF MB50-63	H66	MDQNR/L	A64
KIT BHF MB50-80	H63	MINAR 07	B88
KIT BHF MB63-63	H66	MINBR 04/07	B90
KIT BHF MB80-80	H63	MINCR 07	B83
KIT BHFH MB80-125	H67	MINFR 07D150	B86
KIT BL BHF MB50-32	H64	MINFR/L 07	B87
KIT DIN2080ER	G141	MINGR 04	B84
KIT GTI ERST	G125	MINGR/L 07	B85
KIT GYRO DIN69880ER	G129	MINNR 04/07	B89
KIT GYRO STER	G128	MINPR 04/07	B83
KIT IHAXF 6-30	H67	MINRR 07	B88
KIT MOLD BH F/R 18-28	H66	MINSL	B80
KIT MOLD BH F/R 28-50	H64	MINTR/L 04	B81
KIT MT3ER	G141	MINTR/L 07	B82



Обозначение	Страница	Обозначение	Страница
MTER	G127	PDJNR/L	A71
MTATC	G127	PDJNR/LTB	A124
MTJNR/L	A65	PDNNR/L	A71
MTT 5-MB63	H17	PERC	D142-D143
MULTI CLAMP	G167	PLNG	E192
MVJNR/L	A66	PLT	H68
MVQNR/L	A66	PRDCN	A72
MVVNN	A67	PRESET ER-JET	G163
MWLNR/L	A68	PRESET SCREWB	G164
		PRGCR/L	A73
N		PRGNR/L	A74
		PS BT	G161-G162
NFB	E187	PS CAT	G160
NFR	E188-E189	PS OTT	G161
NPHTRG	D135	PS SK	G160
NPMTLG	D135	PSBNR/L	A75
NPMTRG	D136	PSDNN	A75
NPMXRB/RG	D136	PSKNR/L	A76
NUT ERBIN	G159	PSKNR/LCA	A203
NUT ERMINI	G159, H80	PSRNR/LCA	A203
NUT ERSHORT	G159	PSSNR/L	A76
NUT ERTOP	G159, H79	PSSNR/LCA	A203
NUT ERUM	G159, H80	PTFNR/L	A77
		PTFNR/LCA	A204
0		PTGNR/L	A78
		PTGNR/LCA	A204
OFCN	E190	PTSNR/LCA	A205
OFCR	E190	PTTNR/L	A78
OFCT	E191	PTTNR/LCA	A205
OFCW	E191	PTWNR/LCA	A205
OFMR	E190	PWLNR/LTB	A127
OFMT	E191	B	
D		R	
P			
	- 100 - 1111	R8 MB50	H17
PAD PAD	D139-D141	RCGTFL	A263
PCBNR/L	A69	RCGX	A281
PCFNR/LCA	A202	RCGXFT	A293
PCGNR/LCA	A202	RCMT 120400 PC	A252
PCKNR/L	A70	RCMTMT	A252
PCLNR/L	A70	RCMX	A252
PCLNR/LCA	A202	RCMXRA	A252
PCLNR/LTB	A123	RDMX	E194



Обозначение	Страница	Обозначение	Страница
RE MBAVI	H21	SHTUNR/L 1304	A148
RE MBMB	H20	SHWLNR/L 0604	A149
REA 3L	F107	SMWLNR/L	A150
REBL	F63	SPCLNR/L	A151
REHL	F98	SPDUNR/L	A152
REHM	F97	SPDZNR/L 15	A152
REHS	F96	SPSKNR/L	A153
RELL	F76	SPTFNR/L	A154
REMA 3	F107	SSCLCR/L	A155
REMA 3C	F107	SSCLPR/L	A157
RFMR	E190	SSDQCR/L	A159
RFMT	E191	SSDUCR/L	A160
RIB 2	F45	SSDZCR/L	A161
RIF 2	F46-F47	SSSKCR/L	A162
RING SEMC	G165	SSTFCR/L	A163
RNGN	A275	SSTFPR/L	A164
RNGXCH	E193	SSTUBR/L	A166
RNMG	A227	SSVJCR/L	A170
RNMNFT	A286	SSVPCR/L	A170
RNMNSD	A286	SSVQBR/L	A168
RNMU	E193	SSVQCR/L	A168
RPGN	A281	SSVUBR/L	A169
RPGXCH	E193	SSVUCR/L	A169
RPGXT6	A281	SSWUBR/L	A171
RXHX	E194	SSXUCR/L	D78
RXMX	E194	STCLNR/L 0904	A172
RYHX	E195-E196	STCLNR/LCH	A181
RYMX	E195-E196	STDUNR/L 1305	A173
		STDZNR/L 1305	A174
S		STSKNR/L 0904	A176
		STTFNR/L 1304	A177
S MCTL	G120	STTUNR/L 1304	A178
S ML	G119	STWLNR/L 0604	A179
SCKUNR/L 16	A140	SWTFNR/L	A180
SCSKPR/L	A141	SBE 2LT	F61
SCTFCR/L 06	A142	SBE 2S	F59
SCTFPR/L	A142	SBE 2T	F60
SHCLNR/L 0904	A143	SBE 4T	F62
SHCLNR/L 1205	A143	SBO 2T	F63
SHDUNR/L 1305	A144	SBT 3U	F92
SHDZNR/L 1305	A145	SBT 4U	F92
SHSKNR/L 0904	A146	SCACR/LSH	A79



Обозначение	Страница	Обозначение	Страница
SCGWLS2	A294	SHRINKIN UNIT	G170
SCKN	E197	SIR/L	C19
SCLCR/L	A80	SIR/LCB	C20
SCLCR/LSH	A80	SKAMB	H6
SCMTFG	A253	SKBMB	H7
SCMTMT	A253	SK-D	A188
SCMTPC	A253	SLEEVE D8-D16	H52
SCRM90TN	E39-E40	SLOT	E199
SDJCR/L	A81	SMB 2	F48
SDJCR/LSH	A81	SMH MB	H24
SDJNR/L	A82	SNET	E200
SDKN	E197	SNEX	E200
SDNCN	A83	SNG 452R	A262
SDNCNSH	A83	SNGA	A276
SDQNR/L	A84	SNGGL/R	A228
SEALING SLEEVE 4	D121	SNGN	A276
SED 3T	F93	SNGX	E201-E202
SED 4U	F94	SNGXCH	A277
SED 4U-C	F95	SNHX	E203
SED 4U-R	F94	SNMA	A228
SEH 6T	F56	SNMALN-10	A287
SEH 6T-R	F58	SNMALS/LN	A287
SEH 6XLT	F57	SNMD 250924 HD	A228
SEKN	E198	SNMD 250924 HZ	A229
SEKX	E198	SNMD 310924 HD	A228
SERD	C18	SNMD 310924 HT	A229
SER/L	C17	SNMDHT	A229
SET ERSEAL	G139	SNMDHY	A229
SET ERSEALEM	G140	SNMG	A230
SET ERSEALEM JET2	G141	SNMG 0904	A230
SET ERSEALJET2	G139	SNMG 0904EA	A230
SET ERSPR	G138	SNMG 0904EM	A230
SET ERSPRAA	G138	SNMG 0904FG	A231
SET ERSPREM	G140	SNMG 0904FM	A231
SET ER32 SRK	G170	SNMG 0904MM	A232
SHD 3	D67-D69	SNMG 0904MT	A232
SHD 3CF	D75	SNMG 0904PC	A233
SHD 5	D70-D72	SNMG 120408 CE	A277
SHO 10/15/20	D66	SNMGEA	A230
SHO 3	D59-D61	SNMGEM	A231
SHO 3PH	D65	SNMGET	A231
SHO 5	D62-D64	SNMGFC	A231
SHOM	D73	SNMGFG	A231



Обозначение	Страница	Обозначение	Странина
Обозначение	Страница	Обозначение	Страница
SNMGKT	A231	STERMFD	G117
SNMGMC	A232	STERS	G118
SNMGML	A232	STMB	H14
SNMGMP	A232	STMBE	H15
SNMGMT	A232	STSRK	G124
SNMGPC	A233	STFCR/L	A87
SNMGRT	A233	STFCR/LCA	A207
SNMMEH	A233	STGCR/L	A88
SNMMHT	A233	STGCR/LCA	A207
SNMMHY	A234	STGCR/LSH	A88
SNMMHZ	A234	STSCR/LCA	A207
SNMMRH	A234	STTCR/LCA	A208
SNMMRH(N)	A234	STUB MB80-60	H25
SNMMRX	A234	STWCR/LCA	A208
SNMNSD	A287	SVJBR/L	A89
SNMX	E201, E203	SVJBR/LSH	A89
SNMX 120716 CH	A277	SVJBR/LTB	A126
SNMXHB	A234	SVJCR/L	A90
SOMTDP	D125	SVJNR/L	A90
SPANNER TMC	G166	SVVBN	A91
SPGGDA	D126	SVVBNSH	A91
SPGN	A254	SVVCN	A92
SPGN (Ceramic)	A282		
SPGNLN-7	A294	T	
SPKN	E205		
SPMG	E204	T11-3219	A281
SPMGDG	D125	T32-32-R2	A278
SPMGDK	D126	TA	G157
SPMR	A254	TBA/B	D176
SPMT	E204	TB-BT0	D172
SPUN	A254	TBGTL/R-FF	A255
SR	G163	TBSL 20-10-120 TB-TT0	D80
SRDCN	A85		D171
SRGCR/L SRGCR/LTB	A85	TBTA3DE4 TBTA3SE4	D84
SRR-TX	A125 A268	TBTA3SE4	D82 D83
SSDCN	A200	TBTA5DE4	D89
SSKCR/LCA	A206	TBTA5SE4	D88
SSSCR/LCA	A206	TBTA5SI1	D88
SSSCR/LCA	A206	TBTA7SE4	D00
STERF	G115	TBTA7SI1	D92
STERM	G114	TBTA9SE4	D92
STERMF	G116	TBTA9SI1	D95
O ILI IIVII	GIIO	IDIA9OII	D95



Обозначение	Страница	Обозначение	Страница
TBTA-FBDE4	D100	TCMT 220508-19	A256
TBTA-FBSE4	D98	TCMTFA	A256
TBTA-FBSI1	D99	TCMTFG	A256
TBTA-RSE4	D103-D104	TCMTMT	A256
TBTA-RSI1	D105	TCMTPC	A256
TCAP2.25DN	D76	TCSDIN	H26
TCAP3.0DN	D77	TDA	B77
TCBNR/L	A93	TDB50X	E136-E137
TCBNR/L0904	A93	TDC	B64
TCBNR/LCH	A114	TDFT	B73
TCCDIN	H27	TDIM	B75
TCDF	D130	TDIP	B76
TCDM	D57	TDIT	B73-B74
TCDP/M/K	D127-D129	TDJ	B66
TCDS0-1.5D	D49	TDJNR/L	A95
TCDS0-12D	D56	TDJNR/L1305	A95
TCDS0-3D	D51	TDJNR/LCH	A116
TCDS0-5D	D53	TDJNR/LF	A106
TCDS0-8D	D55	TDM	E116
TCDT1.5D	D48	TDNNNCH	A116
TCDT3D	D50	TDNNR/L	A95
TCDT5D	D52	TDNNR/L1305	A95
TCDT8D	D54	TDQNR/L1305	A96
TCER/L	B25	TDR 2T2	D26-D28
TCETL/R-GF	A256	TDR 25CA-T	D39-D40
TCF	E117	TDR 3T2	D29-D32
TCFR/L	B26	TDR 35CA-T	D41-D42
TCGTCB	A296	TDR 4T2	D33-D35
TCGTFL	A263	TDR 5T2	D36-D38
TCGTSA	A256	TDR20DT-06	D45
TCGWLN-7	A296	TDRBBS50	D44
TCGWLS	A295	TDRC4	D43
тсн	H31, H57	TDT	B69
TCH A.L	H31, H57	TDTE	B69-B70, B72
T-CHAMFERT1	D74	TDTRU	B71
TCHPR/L	B29	TDUNR/L1305	A96
TCHR/L	B28	TDXT	B68
TCKNR/L0904	A94	TDXU	B68
TCKNR/LCH	A114	TE90AN	E111-E112
TCLNR/L	A93	TE90AP	E107-E110
TCLNR/L0904	A93	TE90AX06	E103-E104
TCLNR/LCH	A115	TE90XE	E113-E114
		TEBL	



Обозначение	Страница	Обозначение	Страница
Ооозначение	Страница	Ооозначение	Страница
TEF	E152	TGBFR/L	B21
TEFAN11/16	E146-E147	TGBR/L	B18
TEFAP12/17	E150-E151	TGBR/LDR/L	B19
TEFAX06	E148	TGBR/LTI-DR/L	B20
TEGNR/LF	A107	TGER/L	B22
TERD	E120-E121	TGEUR/L	B52
TERNS	E118-E119	TGFPR/L	B44
TERP12CH	E132	TGFR/L	B40
TERX	E120-E121	TGHR	D79
TERY	E122-E124	TGIFR/L	B46
TES	E152	TGIUR/L	B53
TESAN11/16	E146-E147	TGIUR/L15A	B55
TESAP12/17	E150-E151	TGSFR/L	B39
TEXD	E144-E145	TGSIR/L	B51
TFM15HNS	E82	TGUX	B78
TFM43OFS	E78	THC	G146-G147
TFM43ZOFW	E79	THSNR/L	A97
TFM45AN	E73	TIMC	E206
TFM45HN	E76	TIMJ	E206
TFM45HNS	E74-E75	TIPV	E207
TFM45SN	E66-E67	TMAS	D175
TFM45SNQC	E68	TMBL	D174
TFM45SNS	E69-E70	TMKEY	D170
TFM45SNW	E71	TMSCR	D170
TFM55AHNS	E61	TMT0	D169
TFM75AP	E56	TMTBSPT	C107
TFM75SN	E54	TMTISO	C101
TFM88SN	E52-E53	TMTNPT	C105
TFM90AN	E44-E45	TMTNPTF	C106
TFM90AP	E42-E43	TMTPG	C108
TFM90AX	E41	TMTUN	C102-C103
TFM90SN	E52-E53	TMTW	C104
TFM90SNS	E47	TMTEC EISO	C73
TFM90SNSQC	E48	TMTEC EUN	C81
TFM90XE	E46	TMTECBSPT	C89
TFMBL	E93-E95	TMTECISO	C71
TFMRN12CH	E92	TMTECNPT	C87
TFMRNS	E83-E84	TMTECNPTF	C88
TFMRX	E85-E86	TMTECUN	C79
TFMRY	E87-E90	TMTECW	C86
TFMXD	E96	TMTECBBSPT	C89
TGB	B16	TMTECBISO	C69
TGBMS	B17	TMTECBNPT	C87



Обозначение	Страница	Обозначение	Страница
TMTECBNPTF	C88	TNMG 1304EA	A236
TMTECBUN	C77	TNMG 1304EM	A236
TMTECBW	C86	TNMG 1304FG	A237
TMTECIA60	C91	TNMG 1304FM	A237
TMTECQISO	C72	TNMG 1304FT	A237
TMTECQUN	C80	TNMG 1304MM	A238
TMTECSISO	C74-C75	TNMG 1304MT	A239
TMTECSMJ	C90	TNMG 1304PC	A239
TMTECSUN	C82-C83	TNMG 160408 CE	A279
TMTECSUNJ	C90	TNMGEA	A236
TMTECSHISO	C76	TNMGEM	A236
TMTECSHUN	C84-C85	TNMGET	A237
TMTECZBSPT	C89	TNMGFC	A237
TMTECZISO	C70	TNMGFG	A237
TMTECZNPT	C87	TNMGKT	A238
TMTECZNPTF	C88	TNMGL/R-FS	A237
TMTECZUN	C78	TNMGL/R-VF	A240
TMTECZW	C86	TNMGMC	A238
TMTHBSPT	C112	TNMGML	A238
TMTHF	C112	TNMGMP	A238
TMTHISO	C109	TNMGMT	A239
TMTHNPT	C111	TNMGPC	A239
TMTHUN	C110	TNMGRT	A239
TMTHW	C111	TNMGSF	A240
TMTSLE	C98	TNMMRH	A240
TMTSR	C93	TNMMRX	A240
TMTSR2	C95	TNMX	E208
TMTSR4/5	C97	TOOL CLAMP	G167
TMTSRC	C94	TOP 2T2	D14-D16
TMTSRH	C96	TOP 3T2	D17-D19
TMTSRH 63-9	C99	TOP 4T2	D20-D22
TNF	E126-E128	TOP 5T2	D23-D25
TNFR	E129-E131	TP MBM	H25
TNGA	A279	TPGN	A257
TNGG 1304L/R	A235	TPGN (Ceramic)	A282
TNGGL/R	A235	TPGNLN-7	A296
TNGN	A279	TPGNLS	A295
TNGX	E208	TPGTL/R-C	A257
TNMA	A235	TPGWLS	A295
TNMALN-10	A288	TPGXL/R	A257
TNMALS/LN	A288	TPH52B	C118-C119
TNMG	A236	TPH54C	C120-C121
TNMG 1304	A235	TPKN	E209



Обозначение	Страница	Обозначение	Страница
Ооозпачение	Страница	Обозначение	Страница
TPM	E91, E125	TSMFDZ	E157-E158
TPMR	A258	TSMFD-S/WZN08/11/14	E160, E162-E163
TPMTFG	A258	TSMFFZ	E164
TPMTPC	A258	TSMFFZN08/11	E165, E167
TPMXLG	D137	TSMFF-S/WZN08/11/14	E166, E168-E169
TPMXRB/RG	D137	TSMSL	E155-E156
TPUN	A258	TSMTS16	E153-E154
TQ45HN	E77	TSRNR/LCH	A117
TQ45SNW	E72	TSRNR/LF	A110
TQ90SNS	E49	TS-SSC/TS	D167
TQC 27	B100-B101	TSSNR/L	A99
TQCR/L	B27	TSSNR/L0904	A99
TQHPR/L	B60	TSSNR/LCH	A117
TQHR/L	B59	TSSNR/LF	A110
TQJ 27	B96-B99	TTBN	B23
TQS 27	B102	TTBU	B24
TRDNNF	A108	TTER/L	B36-B37
TRGNR/LF	A108	TTER/L15A	B54
TRWR/L 50-55 TG	A121	TTER/LD	B34
TRWR/L 57.2-76.2 LD	A122	TTER/LSH	B33
TRWR/LCA	A121	TTFIR/L	B47
TS16	E210	TTFNR/L1304	A100
TSA	B77	TTFPR/L	B45
TSBNR/L0904	A98	TTFR/L	B41
TSC	B65	TTFR/LRN	B42-B43
TSCA/K	E170	TTGNR/L	A100
TSDNN	A98	TTGNR/L1304	A100
TSDNN0904	A98	TTIR/L	B48-B49
TSDNNF	A109	TTJNR/L	A100
TSE 2M	F65	TTJNR/L1304	A100
TSE 4M	F66	TTJNR/LF	A111
TSF	E115	TTLEN	B56
TSJ	B67	TTSER/L	B38
TSK	G143-G144	TTSIR/L	B50
TSKC	G145	TTVBR/L	B58
TSKN	G160	TTVER/L	B57
TSKNR/L	A99	TVBR/L	B93
TSKNR/L0904	A99	TVER/L	B92
TSKNR/LF	A109	TVJNR/L	A101
TSKS	G166	TVPR/L	B94
TSL	A182, D80	TVRR/L	B92
TS-LSC/TS	D168	TVTR/L	B93
TSMFDZN08/11	E159, E161	TWLNR/L	A102



Обозначение	Страница	Обозначение	Страница
TWLNR/L0604	A102	VNGXCH	A280
		VNMG	A241
U		VNMGEA	A241
		VNMGEM	A241
UEIRL55	C25	VNMGFA	A241
UEIRL60	C26	VNMGFC	A241
UEIRLW	C40	VNMGFG	A241
UER/LABUT	C54	VNMGFX	A242
UER/LSAGE	C53	VNMGMT	A242
UERLACME	C47	VNMGPC	A242
UERLISO	C28	VNMMML	A242
UERLTR	C51		
UIRSAGE	C53	W	
UIR/LABUT	C54		
UIRL55	C25	WBGTL/R-FF	A261
UIRL60	C26	WBMTL/R-C	A261
UIRLACME	C47	WCGTL	A261
UIRLISO	C30	WCGTL-FF	A261
UIRLTR	C51	WNGA	A280
UIRLUN	C35	WNGAWZ-LS	A290
UIRLW	C40	WNMA	A243
		WNMALS	A290
V		WNMGEA	A243
		WNMGEM	A243
VBETL/R-GF	A259	WNMGET	A243
VBETL/R-GW	A259	WNMGFC	A243
VBGTSA	A259	WNMGFG	A243
VBGWLN-7	A297	WNMGKT	A244
VBGWLS	A297	WNMGMC	A244
VBMTFA	A259	WNMGML	A244
VBMTFG	A259	WNMGMP	A244
VBMTFX	A259	WNMGMT	A244
VBMTMT	A259	WNMGPC	A244
VBMTPC	A260	WNMGRT	A245
VCGTCB	A297	WNMGWS	A245
VCGTFL	A263	WNMGWT	A245
VCGTSA	A260	WNMX 0604EM	A245
VCGWLN-7	A297	WNMX 0604FG	A245
VCMTPC	A260	WNMX 0604FM	A245
VNGA	A280	WNMX 0604MM	A246
VNGALN-10	A289	WNMX 0604MT	A246
VNGALS/LN	A289	WNMX 0604PC	A246
VNGGML	A241	WRENCH COOL TUBE	G165



Обозначение	Страница	Обозначение	Страница
WRENCH ER	G166		
WRENCHSEMC	G164		
WTENN	A103		
WTENN1304	A103		
WTGNR/L	A103		
WTGNR/L1304	A103		
WTJNR/L	A104		
WTJNR/L1304	A104		
WTQNR/L1304	A104		
X			
XCGTC	D132		
XCGTTA	D133		
XCMTGV	D133		
XCMTTC	D134		
XDMX	E211		
XECT	E212		
XNHU	E213-E214		
XNMU	E213-E214		
XOMT	E204		
XPMT45	D138		
Z			
ZNHT	E215		
ZNHU	E216		









### Филиалы компании TaeguTec

#### Главный офис

#### TaeguTec Ltd.

1040 Gachang-ro, Gachang-myeon, Dalseong-gun, Daegu 711-865, KOREA Tel: +82-53-760-7640

Web: http://www.taegutec.com

#### Аргентина

#### TaeguTec Argentina SA

11 de septiembre 4237- Piso 7 (C1429BJC) Ciudad Autónoma Buenos Aires, Argentina Tel: +54-11-4702-6222

E-mail: ventas@taegutec.com.ar

#### **Австралия**

#### TaequTec Australia Ptv Ltd.

Unit 37, Five Ways Business Park, Keysborough Close, Keysborough, VIC 3173 Australia

Tel: +61-3-9798-1900 E-mail: sales@taegutec.com.au

#### Республика Беларусь

#### Twing-M

3/2 Klumova Str, Minsk, 220009, Republic of Belarus Tel: +375-17-506-3238 E-mail: info@twing.by

#### Бельгия

#### Usi-Tools S.P.R.L.

Parc Industriel Des Hauts Sarts1 Avenue.145 4040 Herstal, Belgium Tel: +32-42-480-481 +32-475-783-204

E-mail: usitools@skynet.be

#### Бразилия

#### TaeguTec Brasil Ltda.

Rua Tito, 104-Lapa-Cep 05051-000 São Paulo, Brasil Tel: +55-11-3868-6032

E-mail: vendas@taequbrasil.com.br

#### Чили

#### Cutting Tools Chile E.I.R.L.

Alcalde Pedro Alarcón Nº 765, San Miguel, Santiago - Chile Tel: +56-2-553 6944 +56-2-552 1181

E-mail: ventas@cuttingtools.cl

#### Китай

#### TaeguTec China

RM 1205, Huishang Office Building, No.1286 of Minshena RD. Pudong New District, Shanghai, China PC: 200135

Tel: +86-21-5106-1260 E-mail: mail@taegutec.com.cn

#### Хорватия

#### Intehna Zagreb d.o.o.

Susedsko polje bb, HR-10090 Zagreb-Susedgrad, Croatia Tel: + 385-1-3436-919

E-mail: intehna-zagreb@zg.t-com.hr

#### Чешская Республика

#### TaequTec ČR s.r.o.

Domažlická 180a, CZ-31800 Plzeň, Czech Rep.

Tel: +420 373 720 999 E-mail: top@taegutec.cz

#### Дания

#### TaeguTec Scandinavia A/S.

Omøgade 8, DK-2100 Copenhagen,

Tel: +45-7022-0103 E-mail: tts@taegutec.dk

#### Финляндия

#### **Knorring OY AB**

Mestarintie 4 FI-01730 Vantaa, Finland Tel: +358 956 041

E-mail: christian.borenius@knorring.fi

#### Франция

#### Ingersoll TaequTec France S.A.R.L

21, rue Galilée F-77420 CHAMPS-sur-MARNE, France Tel: +33 (0)1 64 68 45 36 E-mail: info@ingersoll-imc.fr

#### Германия

#### Ingersoll Werkzeuge GmbH

E-mail: info@Ingersoll-IMC.de

Kalteiche Ring 21-25, D-35708, Haiger, Germany Tel: +49 2773-742 0

#### FG Technotools-G.& K.Fakitsas Co.

25th Martiou & Thrakis 15, 15235 Vrilissia, Athens, Greece

Tel: +30-2-10-832-0752 E-mail: Giorgos@technotools.gr

#### TaequTec Hungary Kft.

1142 Budapest, Kassai u.151. Tel: +36-1-273-29-52 E-mail: info@taegutec.hu Web: http://www.taegutec.hu

#### TaequTec India P Ltd.

Plot Nos.119 & 120. Bommasandra Industrial Area, Phase 4, Bengaluru 560 099. India

Tel: +91-80-2783-9111

E-mail: shankar@taegutec-india.com

#### Индонезия

#### PT. TaeguTec Indonesia

Easton Commercial Center Jl. Gunung Panderman Blok B no. 12 Cikarang Selatan-Bekasi 17550, Indonesia Tel: +62-21-29093176/78/79 E-mail: sales@taegutec.co.id

#### Ирландия

#### Hardmetal Machine Tools Ireland Ltd.

Dargan House, Duncairn Terrace, Bray Co. Wicklow, Ireland Tel: +353-1-286-2466 E-mail: sales@hardmetal.ie

#### Италия

#### Ingersoll TaeguTec Italia S.R.L.

Via Montegrappa 78, 20020 Arese (MI), Italy Tel: +39 02.99.76.67.00

E-mail: taegutec@taegutec.it

#### Япония

#### TaeguTec Japan Ltd.

- Osaka / Head office Senri Asahi Hankyu Bldg. 15F 1-5-3 Shinsenri-Higashimachi Tovonaka-shi Osaka 560-0082, Japan Tel: +81-6-6835-7731

E-mail: taegutec@taegutec.co.jp Website: http://www.taegutec.co.jp

- Nagova / Branch office Tel: +81-52-745-2451

- Tokyo / Branch office Tel: +81-3-5753-6281

#### Питва

#### **UAB TTMT**

R.Kalantos str. 161 LT-52315 Kaunas, Lithuania Tel: +370-37-328487 E-mail: sigitas@ttmt.lt

#### Малайзия

#### TaeguTec Tooling Systems Malaysia Sdn. Bhd

No.23-1&2, Jalan Anggerik Vanilla BF 31/BF Kota Kemuning, Seksyen 31 40460 Shah Alam Selangor Darul, Malaysia Tel: +603-5131-7514

E-mail: info@taegutec.com.my

#### Нидерланды T.C.E.

#### Kennedylaan 14, 5466 AA, Veghel,

The Netherlands Tel: +31 (413) 38 83 10 E-mail: info@taegutec.nl Website: http://www.taegutec.nl

#### Новая Зеландия

#### TT Pacific

1/501 Mt. Wellington Highway Sylvia Park, Auckland, New Zealand 1060

Tel: +64-9-573-1280 E-mail: sales@iscar.co.nz

#### Пакистан

#### **Dynamic Tooling Services**

Office No.301, 3rd Floor, Royal Center, Blue Are, Fazal-E-Haque Road, Islamabad, Pakistan Tel: +92-51-2806197 E-mail: info@dts.com.pk

#### Филиппины

#### Colt Commercial Inc.

Suite 508 Padilla delos Reves Bldg. 232 Juan Luna St., Binondo, Manila **Philippines** 

Tel: +63-2-244-9756 E-mail: cyrus@colt.com.ph



#### Польша

#### TaequTec Poland Sp. z o.o.

Ul. Kościelna 8 52-314 Wrocław, Poland Tel: +48 71 785 40 85 E-mail: sales@taequtec.pl

#### Португалия

#### Hexatool, S.A.

Rua Casal Galego, No. 40.44 2430 Marinha Grande, Portugal Tel: +351-244-550424/5 E-mail: hexatool@hexatool.com

#### Румыния

#### SC TaequTec Tools SRL

Splaiul Unirii, nr. 4, Bl. B3, 5th Floor. Office 5.1. District 4.. Bucharest. Romania, 040031 Tel: +4021 210 3108 E-mail: marian.luca@taegutec.ro

#### Россия

#### TaeguTec Russia

123290, Russia, Moscow, 2nd Magistralnaya str, 8A, building 5 Tel: +7-495-627-79-17 E-mail: sales@taegutec.ru

#### Сербия

#### Intehna Beo d.o.o.

Autoput 22, 11080 Zemun, Serbia Tel: +381-11-3149-092 E-mail: info@intehnabeo.rs

#### Сингапур

#### TT Tooling Systems

BK502, #03-823, Jurong West Avenue 1, Singapore 640502 Tel: +65-6-4254918 E-mail: kltan@sinotool.com.sg

#### Словакия

#### TaeguTec Slovakia, s.r.o.

Bytčická 2/44 010 01 Žilina Slovak Republic Tel: +421 41 7000056 E-mail: matus@taegutec.sk

#### Словения

#### Intehna d.o.o.

Špruha 40, Si-1236, Trzin, Slovenia Tel: +386-1-580-9260 E-mail: info@intehna.si

#### Южная Африка

#### TaeguTec South Africa (Pty) Ltd.

P.O. Box 3121, Springs, 1560 43 South Main Reef Road. New Era Springs Gauteng, South Africa Tel: +2711-362-1500 E-mail: info@taegutec.co.za

#### Испания TaequTec Spain S.L

Miguel Servet, 35 P.I.Bufalvent 08243 Manresa (Barcelona), Spain Tel: +34-93-878-7309~10 E-mail: info@taegutec.es

#### Швеция

#### SMV Verktyg AB

Parkgatan 6 SE-333 31 Smalandsstenar, Sweden Tel: +46-371-343-48 E-mail: verktyg@smv.se

#### Тайвань

#### TaeguTec Taiwan

3F., No.56, Min Tai St., Ku-Shan Dist., Kaohsiung City 804, Taiwan (R.O.C.) Tel: +886-7-5505996 E-mail: info@tw.taegutec.com

#### Таиланд

#### TaequTec(Thailand) Co.,Ltd.

6/177 M.7 Srinakarin Rd., T.Bangmuang, A.Muangsamutprakarn, Samutprakarn 10270, Thailand Tel: +662-759-9300, 662-759-9172 E-mail: info@taegutecthai.co.th

#### Турция

#### TaeguTec Turkey

TOSB Otomotiv Yan Sanayi Ihtisas Organize Sanayi Bolgesi 1.Cad. 15.Sokak No:9 41420 Sekerpinar Cayırova/KOCAELI, Türkiye

Tel: +90-850-201-69-00 E-mail: info@taegutec.com.tr

#### Украина

#### TaequTec Ukraine

40-b. Pushkina avenue. Dnepropetrovsk Ukraine, 49006

Tel: +38-056-790-84-09 E-mail: td@taegutec.com.ua

#### A.F.Husain

Al Ghurair W/H Shed No. 60 Al Quoz Industrial Area P.O. Box: 4007 Dubai, UAE Tel: +971-4-3400034 F-mail: info@afh-tools.com

#### Великобритания

#### TaeguTec UK Ltd.

Waterside, Grange Park, Wetherby, Leeds, LS22 5NB, United Kingdom Tel: +44-1937-589-828 E-mail: info@taegutec.co.uk

#### **Ingersoll Cutting Tools**

845 S Lyford Road Rockford. IL 61108-2749, U.S.A. Tel: +1-815-387-6600 E-mail: info@ingersoll-imc.com

#### Вьетнам

#### DMC Technology Co., Ltd.

No. 109, Cong Hoa Street, Ward 12, Tan Binh District, Ho Chi Minh City, Vietnam.

Tel: +84-8-62925556 E-mail: info@dmctech.com.vn





# TaeguTeconomics, by all means!





- Cat.No: 6146750
- Russian Version: CT 08/2015
- ©TaeguTec LTD.